Abstract

Leakage currents originating in the virtual substrates which are required in many Si heterostructure systems have been measured. Both ohmic (AuSb) and Schottky (Pt) contacts to a modulation-doped Si:SiGe heterostructure show significant leakage when the contacts cover deep pits originating from growth defects and contaminants. Shallower pits emerging later in the growth process do not contribute to extra conduction. These pits appear after growth of the graded layer which leads us to conclude that carrier transport from the contact along the dense network of dislocations formed in the graded buffer layer is responsible for the leakage found in Si:SiGe systems making use of virtual substrates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call