Abstract
Assume we are given a set of parallel line segments in the plane, and we wish to place a point on each line segment such that the resulting point set maximizes or minimizes the area of the largest or smallest triangle in the set. We analyze the complexity of the four resulting computational problems, and we show that three of them admit polynomial-time algorithms, while the fourth is NP-hard. Specifically, we show that maximizing the largest triangle can be done in O(n2) time (or in O(nlogn) time for unit segments); minimizing the largest triangle can be done in O(n4) time; maximizing the smallest triangle is NP-hard; but minimizing the smallest triangle can be done in O(n2) time. We also discuss to what extent our results can be generalized to polygons with k>3 sides.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.