Abstract

Robotic mechanisms in general can be of either serial-chain, parallel-chain, or hybrid (a combination of both parallel and serial chains) geometry. While it can be asserted that kinematic theories and techniques are well established for fully serial-chain manipulators, the same assertion cannot be made when it is considered in the general context. In this article, we present a general procedure for systematic formulation and characterization of the instantaneous kinematics for a robotic mechanism with a general parallel-chain geometry. A kinestatic approach based on screw system theory is adopted in this treatment. The resulting equation is a compact Jacobian matrix of the system which includes attributes from not only the active joints but also the passive constraints. An example has been provided to demonstrate the methodology as well as its theoretical feasibility.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.