Abstract

The extraordinary quantum properties of nonequilibrium systems governed by dissipative dynamics have become a focal point in contemporary scientific inquiry. The nonequilibrium Green's functions (NEGF) theory provides a versatile method for addressing driven nondissipative systems, utilizing the powerful diagrammatic technique to incorporate correlation effects. We here present a second-quantization approach to the dissipative NEGF theory, reformulating Keldysh ideas to accommodate Lindbladian dynamics and extending the Kadanoff-Baym equations accordingly. Generalizing diagrammatic perturbation theory for many-body Lindblad operators, the formalism enables correlated and dissipative real-time simulations for the exploration of transient and steady-state changes in the electronic, transport, and optical properties of materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.