Abstract
The Lieb-Robinson bound (LRB) states that the range and strength of interactions between the constituents of a complex many-body system impose upper limits to how fast the signal can propagate. It manifests in a light conelike growth of correlation function connecting two distant subsystems. Here, we employ the techniques of quantum information to demonstrate that the LRB can be determined from local measurements performed on a single qubit that is connected to a many-body system. This formulation provides an operational recipe for estimating the LRB in complex systems, replacing the measurement of the correlation function with simple single-particle manipulations. We demonstrate the potency of this approach by deriving the upper limit to the speed of signal propagation in the XY spin chain.
Submitted Version (
Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have