Abstract

The present study using zebrafish as a model explores the role of isotocin, a homolog of oxytocin, in controlling ion regulatory mechanisms. Double-deionized water treatment for 24 h significantly stimulated isotocin mRNA expression in zebrafish embryos. Whole-body Cl−, Ca2+, and Na+ contents, mRNA expressions of ion transporters and ionocyte-differentiation related transcription factors, and the number of skin ionocytes decreased in isotocin morphants. In contrast, overexpression of isotocin caused an increase in ionocyte numbers. Isotocin morpholino caused significant suppression of foxi3a mRNA expression, while isotocin cRNA stimulated foxi3a mRNA expressions at the tail-bud stage of zebrafish embryos. The density of P63 (an epidermal stem cell marker)-positive cells was downregulated by isotocin morpholinos and was upregulated by isotocin cRNA. Taken together, isotocin stimulates the proliferation of epidermal stem cells and differentiation of ionocyte progenitors by regulating the P63 and Foxi3a transcription factors, consequently enhancing the functional activities of ionocytes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.