Abstract
Skin contains various populations of stem cells (SCs). Among these are hair follicle stem cells (HFSCs) in the bulge region. The behavior of HFSCs deserves to be widely studied due to the benefits to be derived from their identification, isolation, and amplification. Skin samples of newborn mice (n = 32) and human adults (n = 10) were used, and the bulge region was isolated and cultured. The isolation and characterization of cells were conducted through immunocytochemistry and immunofluorescence, using mainly CD34 and CD200 monoclonal antibodies. Initially, cells grew slowly from the explant around the bulge region, accruing cells with different morphology in both mouse and human, latter being mostly polygonal; the mouse cells reaching confluence faster (5 to 7 days) than the human (12 to 15 days). It was possible to isolate into subcultures cells with small size (10 - 13 μm diameter), round-shape, scant cytoplasm, central prominent nucleus and with nucleolus, which formed colonies, maintaining their phenotype in a high proportion (77% - 83% and 91% in mouse and human, respectively), without showing changes in their morphology during almost 7 months in the mouse cells, and a month and a half in the human. These results demonstrate that the selection, the isolation, and the conditioned mediums allowed population increases of bulge cells and indicate that cultured cells may retain their sternness in that they maintained their phenotypic characteristics, expressed specific markers for SCs, and showed a high proliferative capacity for long periods. Hair follicles, in mice and humans, are important repositories of multipotent stem cells, due to their tendency to differentiate into keratinocytes. Human HFSCs, obtained by depilation, preserve their potential for proliferation and prove to be easily accessible. This suggests that the bulge cells may present an alternative source of autologous stem cells for tissue engineering and regenerative medicine.
Highlights
Stem cells (SCs) are characterized by their capacity to self-renew and their ability to differentiate into various cell lineages
These results demonstrate that the selection, the isolation, and the conditioned mediums allowed population increases of bulge cells and indicate that cultured cells may retain their sternness in that they maintained their phenotypic characteristics, expressed specific markers for stem cells (SCs), and showed a high proliferative capacity for long periods
Hair follicle stem cells (HFSCs) reside in a structure within the outer root sheath (ORS) of the hair follicle known as the “bulge”, which acts as a reservoir of multipotent SC and, extends from the insertion point of the sebaceous gland duct to the attachment site for the arrector pili muscle [8] [9] [10] [11]
Summary
Stem cells (SCs) are characterized by their capacity to self-renew and their ability to differentiate into various cell lineages. Adult stem cells are able to differentiate into all cell types. The skin contains different populations of stem cells [2], localized into the interfollicular epidermis, the hair follicle, and the sebaceous glands. Hair follicle stem cells (HFSCs) reside in a structure within the outer root sheath (ORS) of the hair follicle known as the “bulge”, which acts as a reservoir of multipotent SC and, extends from the insertion point of the sebaceous gland duct to the attachment site for the arrector pili muscle [8] [9] [10] [11]. SCs exit the bulge and proliferate downward, creating a long linear trail of cells, the ORS [12]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.