Abstract

In order to make good quality economical diamond electronic devices, it is essential to grow films and to dope these films to obtain n- and p- type conductivity. This review talk discuss first doping by ion implantation plus annealing of the implantation damage, and second flow to make large area single crystal diamonds. C implantation damage below an estimated Frenkel defect concentration of 7% could be recovered almost completely by annealing at 950C. For a defect concentration between 7 and 10%, a stable damage form of diamond (``green diamond``) was formed by annealing. At still higher damage levels, the diamond graphitized. To introduce p-type doping, we have co-implanted B and C into natural diamond at 77K, followed by annealing up to 1100C. The resulting semiconducting material has electrical properties similar to those of natural B-doped diamond. To create n-type diamond, we have implanted Na{sup +}, P+ and As{sup +} ions and have observed semiconducting behavior. This has been compared with carbon or noble element implantation, in an attempt to isolate the effect of radiation damage. Recently, in order to obtain large area signal crystals, we have developed a novel technique for removing thin layers of diamond from bulk or homoepitaxialmore » films. This method consists of ion implantation, followed by selective etching. High energy (4--5 MeV) implantation of carbon or oxygen ions creates a well-defined layer of damaged diamond buried at a controlled depth. This layer is graphitized and selectivity etched either by heating at 550C in an oxygen ambient or by electrolysis. This process successfully lifts off the diamond plate above the graphite layer. The lift-off method, combined with well-established homoepitaxial growth processes, has potential for fabrication of large area single-crystal diamond sheets.« less

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.