Abstract
The commercial success of silicon carbide (SiC) diodes and MOSFETs for the automotive industry has led many in the field to begin developing ultra-high voltage (UHV) SiC insulated gate bipolar transistors (IGBTs), rated from 6 kV to 30 kV, for future grid conversion applications. Despite this early interest, there has been little work conducted on the optimal layout for the SiC IGBT, most early work seeking to overcome difficulties in fabricating the devices without a P+ substrate. In this paper, numerical TCAD simulations are used to examine the link between the carrier lifetime of SiC IGBTs and their short circuit capability. For the planar devices, simulations show that increasing carrier lifetime from 1 to 10 μs, has not only a profound effect reducing on-state losses, but also increases short circuit withstand time (SCWT) by 39%. Two retrograde p-well designs are also investigated, the optimal device for SCWT having a 100 nm channel region of 5×1016 cm-3, with this increasing to a peak value of 2×1018 cm-3, in a 700 nm region beneath the channel.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have