Abstract

Hydrogen fuel cell electric vehicles are emerging as a means of transportation using renewable and carbon-free energy due to global warming and air pollution. Hydrogen fuel cell electric vehicles are typically refueled at a wide range of temperatures (−40 °C to 85 °C) in hydrogen refueling stations in accordance with globally accepted standards. Currently, there is no traceable method by which to verify and calibrate the Coriolis mass flowmeters used at hydrogen refueling stations, except for a water calibration process as a conventional method for mass flowrate calibration. To verify the hydrogen flow metering to a suitable level of accuracy under the challenging condition of high pressures and a wide range of temperatures, necessary methodologies and calibration facilities are developed in the present study. A flow measurement characteristic test of the hydrogen mass flowmeter under identical density conditions of the refueled hydrogen was conducted using the high-pressure gas flow standard system of the Korea Research Institute of Standards and Science to assess the effects on the medium and pressure of the mass flowmeter in a density-matching approach. To investigate the pressure dependence of the mass flowmeter at a hydrogen refueling station, a high-pressure water flow test was conducted in the pressure range of 2 bar to 700 bar, which is a pressure-matching approach. Finally, the KRISS Hydrogen Field Test Standard based on the gravimetric principle was developed to verify the measurement accuracy of the mass flowmeter to be used at hydrogen refueling stations for the first time in Korea.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call