Abstract
Delamination of a cross-ply 0/90 glass fibre-reinforced composite laminate with an epoxy-phenol matrix was studied using a double cantilever beam test. Fracture toughness was determined by measurement of bend angle of the cantilever beams. Results obtained with this method were in agreement with those from conventional compliance and area methods. Two different fracture modes were observed: interlaminar and intralaminar. In the interlaminar fracture mode, crack jumps in the space between two neighbouring 0° and 90° plies were observed. With the interlaminar fracture mode, during crack initiation G Ic decreased with crack length. Intralaminar fracture mode consisted of the gradual growth of a crack through a 0° ply. Fibres bridging the opposite sides of the crack were observed in this case, and fracture toughness G Ic did not change with crack length. G Ic (420 J m −2) at intralaminar fracture mode was approximately twice that at interlaminar fracture mode (220 J m −2). The difference in fracture toughness was explained by the dissipation of energy by fibres bridging the opposite sides of the crack at intralaminar fracture mode.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.