Abstract
Modelling of the interaction between Hot Carrier Aging (HCA) and Positive Bias Temperature Instability (PBTI) has been considered as one of the main challenges in nanoscale CMOS circuit design. Previous works were mainly based on separate HCA and PBTI instead of Interacted HCA-PBTI Degradation (IHPD). The key advance of this work is to develop a methodology that enables accurate modelling of IHPD through understanding the charging/discharging and generation kinetics of different types of defects during the interaction between HCA and PBTI. It is found that degradation during alternating HCA and PBTI stress cannot be modelled by independent HCI/PBTI. Different stress sequence, i.e. HCA-PBTI-HCA and PBTI-HCA-PBTI, lead to completely different degradation kinetics. Based on the Cyclic Anti-neutralization Model (CAM), for the first time, IHPD has been accurately modelled for both short and long channel devices. Complex degradation mechanisms and kinetics can be well explained by our model. Our results show that device lifetime can be underestimated by one decade without considering interaction.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have