Abstract
BackgroundThe chamois, distributed over most of the medium to high altitude mountain ranges of southern Eurasia, provides an excellent model for exploring the effects of historical and evolutionary events on diversification. Populations have been grouped into two species, Rupicapra pyrenaica from southwestern Europe and R. rupicapra from eastern Europe. However, a previous study of cytochrome b revealed that the two proposed species were non-monophyletic. The reconstruction of phylogenetic relationships between animal species often depends on the markers studied. To further elucidate the evolutionary history of chamois, we extended earlier studies by analysing DNA sequences of four mitochondrial regions (ND1, 12S, tRNApro and Control Region) and microsatellites (20 loci) to include all subspecies and cover its entire distribution range.ResultsWe found discordant microsatellite (μsat) and mitochondrial (mt) DNA phylogenies. Mitochondrial phylogenies form three clades, West, Central and East (mtW, mtC and mtE), at variance with taxonomic classification. Our divergence age estimates indicate an initial separation into branches mtW-mtC and mtE 1.7 million years ago (mya), in the late Pliocene-early Pleistocene, quickly followed by the split of clades mtW and mtC. Clade mtW contains haplotypes from the Iberian peninsula and the western Alps, Clade mtC includes haplotypes from the Apennines and the Massif of Chartreuse and Clade mtE comprises populations to the east of the Alps. Divergence among populations within these three major clades is recent (< 0.5 mya). New microsatellite multilocus genotypes added to previously published data revealed differences between every pair of subspecies, forming three well defined groups (μsatW, μsatC and μsatE) also with a strong geographic signature. Grouping does not correspond with the mitochondrial lineages but is closer to morphology and taxonomic classification. Recent drastic reductions in population size can be noted for the subspecies ornata as an extremely low diversity.ConclusionsThe phylogeographic patterns for mtDNA and microsatellites suggest an evolutionary history with limited range contractions and expansions during the Quaternary period and reflect a major effect of the Alpine barrier on west-east differentiation. The contrasting phylogenies for mtDNA and microsatellites indicate events of hybridization among highly divergent lineages in the central area of distribution. Our study points to the importance of reticulate evolution, with periods of isolation and reduction of population size followed by expansions and hybridizations, in the diversification at the level of close species or subspecies.
Highlights
The chamois, distributed over most of the medium to high altitude mountain ranges of southern Eurasia, provides an excellent model for exploring the effects of historical and evolutionary events on diversification
The Quaternary glacial ages probably had a major effect on the phylogeography and evolution of the genus Rupicapra, as it did on other animals in Eurasia [8,9,10,11]
The Rupicaprini seem to have originated in Asia during the Miocene period [11]; the fossil genus Procamptoceras appeared in Europe in the Villafranchian period and together with Rupicapra is believed to belong to a phyletic lineage that had already separated from the ancestral Rupicaprini [12]
Summary
The chamois, distributed over most of the medium to high altitude mountain ranges of southern Eurasia, provides an excellent model for exploring the effects of historical and evolutionary events on diversification. The chamois (Rupicapra spp.) provides an excellent model for exploring the effect of historical and evolutionary events on diversification. It is distributed over most of the medium to high altitude mountain ranges of southern Eurasia (Figure 1). The geographic distribution of separated mtDNA clades allows the study of historical demographic and dispersal events and the differentiation between mtDNA sequences can be used to date the separation among phylogenetic groups. The study of microsatellites [20] has shown a correlation between genetic and geographic distance between populations, denoting a genetic flow among contiguous populations
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have