Abstract

BackgroundBaboons of the genus Papio are distributed over wide ranges of Africa and even colonized parts of the Arabian Peninsula. Traditionally, five phenotypically distinct species are recognized, but recent molecular studies were not able to resolve their phylogenetic relationships. Moreover, these studies revealed para- and polyphyletic (hereafter paraphyletic) mitochondrial clades for baboons from eastern Africa, and it was hypothesized that introgressive hybridization might have contributed substantially to their evolutionary history. To further elucidate the phylogenetic relationships among baboons, we extended earlier studies by analysing the complete mitochondrial cytochrome b gene and the 'Brown region' from 67 specimens collected at 53 sites, which represent all species and which cover most of the baboons' range.ResultsBased on phylogenetic tree reconstructions seven well supported major haplogroups were detected, which reflect geographic populations and discordance between mitochondrial phylogeny and baboon morphology. Our divergence age estimates indicate an initial separation into southern and northern baboon clades 2.09 (1.54–2.71) million years ago (mya). We found deep divergences between haplogroups within several species (~2 mya, northern and southern yellow baboons, western and eastern olive baboons and northern and southern chacma baboons), but also recent divergence ages among species (< 0.7 mya, yellow, olive and hamadryas baboons in eastern Africa).ConclusionOur study confirms earlier findings for eastern Africa, but shows that baboon species from other parts of the continent are also mitochondrially paraphyletic. The phylogenetic patterns suggest a complex evolutionary history with multiple phases of isolation and reconnection of populations. Most likely all these biogeographic events were triggered by multiple cycles of expansion and retreat of savannah biomes during Pleistocene glacial and inter-glacial periods. During contact phases of populations reticulate events (i.e. introgressive hybridization) were highly likely, similar to ongoing hybridization, which is observed between East African baboon populations. Defining the extent of the introgressive hybridization will require further molecular studies that incorporate additional sampling sites and nuclear loci.

Highlights

  • Baboons of the genus Papio are distributed over wide ranges of Africa and even colonized parts of the Arabian Peninsula

  • We found two more clades, one comprised of yellow and olive baboon haplotypes from northern Tanzania, Kenya and Somalia while the other represents a mixture of olive and hamadryas baboon haplotypes from Ethiopia, Eritrea and the Arabian Peninsula

  • Our phylogenetic reconstruction suggests that baboon populations can be diagnosed through mitochondrial DNA (mtDNA) and are sorted into several coherent and reasonably well-supported haplogroups that do not match with recognized baboon species

Read more

Summary

Introduction

Five phenotypically distinct species are recognized, but recent molecular studies were not able to resolve their phylogenetic relationships These studies revealed para- and polyphyletic (hereafter paraphyletic) mitochondrial clades for baboons from eastern Africa, and it was hypothesized that introgressive hybridization might have contributed substantially to their evolutionary history. Baboons are distributed all over sub-Saharan Africa, excluding most parts of the west and central African rainforest, and have even colonized parts of the Arabian Peninsula [1113] (Figure 1). They form morphologically and geographically distinct populations but demonstrate no pre- or postzygotic reproductive isolation [8,14,15,16]. The five generally acknowledged baboon types are the Guinea baboon (P. (hamadryas) papio) from West Africa, the olive baboon (P. (h.) anubis) from the northern savannah belt, the hamadryas baboon (P. (h.) hamadryas) from north-east Africa and the south-western Arabian Peninsula, the yellow baboon (P. (h.) cynocephalus) from the East African coastal lowlands, Zambia and Angola and the chacma baboon (P. (h.) ursinus) from southern Africa (Figure 1)

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call