Abstract

BackgroundSeamount-associated faunas are often considered highly endemic but isolation and diversification processes leading to such endemism have been poorly documented at those depths. Likewise, species delimitation and phylogenetic studies in deep-sea organisms remain scarce, due to the difficulty in obtaining samples, and sometimes controversial. The phylogenetic relationships within the precious coral family Coralliidae remain largely unexplored and the monophyly of its two constituent genera, Corallium Cuvier and Paracorallium Bayer & Cairns, has not been resolved. As traditionally recognized, the diversity of colonial forms among the various species correlates with the diversity in shape of their supporting axis, but the phylogenetic significance of these characters remains to be tested. We thus used mitochondrial sequence data to evaluate the monophyly of Corallium and Paracorallium and the species boundaries for nearly all named taxa in the family. Species from across the coralliid range, including material from Antarctica, Hawaii, Japan, New Zealand, Taiwan, Tasmania, the eastern Pacific and the western Atlantic were examined.ResultsThe concatenated analysis of five mitochondrial regions (COI, 16S rRNA, ND2, and ND3-ND6) recovered two major coralliid clades. One clade is composed of two subgroups, the first including Corallium rubrum, the type species of the genus, together with a small group of Paracorallium species (P. japonicum and P. tortuosum) and C. medea (clade I-A); the other subgroup includes a poorly-resolved assemblage of six Corallium species (C. abyssale, C. ducale, C. imperiale, C. laauense, C. niobe, and C. sulcatum; clade I-B). The second major clade is well resolved and includes species of Corallium and Paracorallium (C. elatius, C. kishinouyei, C. konojoi, C. niveum, C. secundum, Corallium sp., Paracorallium nix, Paracorallium thrinax and Paracorallium spp.). A traditional taxonomic study of this clade delineated 11 morphospecies that were congruent with the general mixed Yule-coalescent (GMYC) model. A multilocus species-tree approach also identified the same two well-supported clades, being Clade I-B more recent in the species tree (18.0-15.9 mya) than in the gene tree (35.2-15.9 mya). In contrast, the diversification times for Clade II were more ancient in the species tree (136.4-41.7 mya) than in the gene tree (66.3-16.9 mya).ConclusionsOur results provide no support for the taxonomic status of the two currently recognized genera in the family Coralliidae. Given that Paracorallium species were all nested within Corallium, we recognize the coralliid genus Corallium, which includes the type species of the family, and thus consider Paracorallium a junior synonym of Corallium. We propose the use of the genus Hemicorallium Gray for clade I-B (species with long rod sclerites, cylindrical autozooids and smooth axis). Species delimitation in clade I-B remains unclear and the molecular resolution for Coralliidae species is inconsistent in the two main clades. Some species have wide distributions, recent diversification times and low mtDNA divergence whereas other species exhibit narrower allopatric distributions, older diversification times and greater levels of mtDNA resolution.

Highlights

  • Seamount-associated faunas are often considered highly endemic but isolation and diversification processes leading to such endemism have been poorly documented at those depths

  • Given that Paracorallium species were all nested within Corallium, we recognize the coralliid genus Corallium, which includes the type species of the family, and consider Paracorallium a junior synonym of Corallium

  • We propose the use of the genus Hemicorallium Gray for clade I-B

Read more

Summary

Introduction

Seamount-associated faunas are often considered highly endemic but isolation and diversification processes leading to such endemism have been poorly documented at those depths. Species delimitation and phylogenetic studies in deep-sea organisms remain scarce, due to the difficulty in obtaining samples, and sometimes controversial. We used mitochondrial sequence data to evaluate the monophyly of Corallium and Paracorallium and the species boundaries for most named taxa in the family. Delimiting species is an old systematic problem, which continues to be controversial (e.g., [1,2,3,4,5,6,7,8,9]). It is crucial to better understand species boundaries in deep-water groups. Estimation of divergence times in deep-sea faunas is a promising approach to understand events that have influenced both the evolution of these neglected marine organisms and the changes in this poorly explored environment. There are no universal criteria by which species should be delineated and identified, and both, non-tree based (measures of gene flow) and tree-based approaches have been applied [4,6,7,12,13,14,15]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call