Abstract

Design techniques are presented for the realization of high-performance integrated interference suppression filters using bond-wire inductors. A new configuration is proposed for mitigating the impact of mutual coupling between the bond wires. A differential low-noise amplifier with an integrated on-chip passive interference suppression filter is designed at 2.1 GHz in a 0.18-mum CMOS process, and achieves a transmit leakage suppression of 10 dB at 190-MHz offset. The differential filter uses metal-insulator-metal capacitors and bond-wire inductors and occupies only 0.22 mm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> . The cascaded system achieves a measured gain of 9.5 dB with a 1.6-dB noise figure and -5 dBm out-of-band IIP <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sub> and consumes 11 mA from a 2-V supply.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.