Abstract

An integrated differential CMOS low-noise amplifier (LNA) with high gain, low dc power consumption, and low noise figure is presented in this paper. By introducing a current-reused negative-conductance accommodation structure to a differential LNA, the transconductance of the LNA can be effectively increased, leading to a performance enhanced differential LNA. To characterize the performance improvement of the differential LNA, two differential LNAs with and without the 33.3% current-reused negative-conductance accommodation structure were designed and fabricated for comparison. At supply voltages of 0.65-V VDD1 and 1.2-V VDD2, the measured gain of the differential LNA can be significantly improved from 13.1 dB to 15.8 dB, leading to a remarkable 2.7-dB gain increment. The measured dc power dissipation of the presented differential LNA with negative-conductance accommodation structure is 11.48 mW. In addition, the measured noise figure of the differential LNA with a current-reused negative-conductance accommodation structure is 3.3 dB. Compared to previously published 0.18-μm CMOS LNAs at the same frequency of interest, the proposed differential LNA with the current-reused negative-conductance accommodation structure achieves the high gain, low dc power dissipation, and low noise figure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.