Abstract

In this paper, in order to approach this problem, specimens of pure titanium were treated with WCP, and the subsequent changes in microstructure, residual stress, and surface morphologies were investigated as a function of WCP duration. The influence of water cavitation peening (WCP) treatment on the microstructure of pure titanium was investigated. A novel combined finite element and dislocation density method (FEM/DDM), proposed for predicting macro and micro residual stresses induced on the material subsurface treated with water cavitation peening, is also presented. A bilinear elastic-plastic finite element method was conducted to predict macro-residual stresses and a dislocation density method was conducted to predict micro-residual stresses. These approaches made possible the prediction of the magnitude and depth of residual stress fields in pure titanium. The effect of applied impact pressures on the residual stresses was also presented. The results of the FEM/DDM modeling were in good agreement with those of the experimental measurements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call