Abstract
Connection patterns among Local Optima Networks (LONs) can inform heuristic design for optimisation. LON research has predominantly required complete enumeration of a fitness landscape, thereby restricting analysis to problems diminutive in size compared to real-life situations. LON sampling algorithms are therefore important. In this article, we study LON construction algorithms for the Quadratic Assignment Problem (QAP). Using machine learning, we use estimated LON features to predict search performance for competitive heuristics used in the QAP domain. The results show that by using random forest regression, LON construction algorithms produce fitness landscape features which can explain almost all search variance. We find that LON samples better relate to search than enumerated LONs do. The importance of fitness levels of sampled LONs in search predictions is crystallised. Features from LONs produced by different algorithms are combined in predictions for the first time, with promising results for this "super-sampling": a model to predict tabu search success explained 99% of variance. Arguments are made for the use-case of each LON algorithm and for combining the exploitative process of one with the exploratory optimisation of the other.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.