Abstract
AbstractWe study the effect of varying perturbation strength on the fractal dimensions of Quadratic Assignment Problem (QAP) fitness landscapes induced by iterated local search (ILS). Fitness landscapes are represented as Local Optima Networks (LONs), which are graphs mapping algorithm search connectivity in a landscape. LONs are constructed for QAP instances and fractal dimension measurements taken from the networks. Thereafter, the interplay between perturbation strength, LON fractal dimension, and algorithm difficulty on the underlying combinatorial problems is analysed. The results show that higher-perturbation LONs also have higher fractal dimensions. ILS algorithm performance prediction using fractal dimension features may benefit more from LONs formed using a high perturbation strength; this model configuration enjoyed excellent performance. Around half of variance in Robust Taboo Search performance on the data-set used could be explained with the aid of fractal dimension features.KeywordsLocal Optima NetworkFractal dimensionQuadratic Assignment ProblemQAPIterated local searchPerturbation strengthFitness landscapes
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.