Abstract

The existence of sub-optimal funnels in combinatorial fitness landscapes has been linked to search difficulty. The exact nature of these structures --- and how commonly they appear --- is not yet fully understood. Improving our understanding of funnels could help with designing effective diversification mechanisms for a 'smoothing' effect, making optimisation easier. We model fitness landscapes as local optima networks. The relationship between communities of local optima found by network clustering algorithms and funnels is explored. Funnels are identified using the notion of monotonic sequences from the study of energy landscapes in theoretical chemistry. NK Landscapes and the Quadratic Assignment Problem are used as case studies. Our results show that communities are linked to funnels. The analysis exhibits relationships between these landscape structures and the performance of trajectory-based metaheuristics such as Simulated Annealing (SA) and Iterated Local Search (ILS). In particular, ILS gets trapped in funnels, and modular communities of optima slow it down. The funnels contribute to lower success for SA. We show that increasing the strength of ILS perturbation helps to 'smooth' the funnels and improves performance in multi-funnel landscapes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.