Abstract

Recently, computationally intensive multiobjective optimization problems have been efficiently solved by surrogate-assisted multiobjective evolutionary algorithms. However, most of those algorithms can only handle no more than 200 decision variables. As the number of decision variables increases further, unreliable surrogate models will result in a dramatic deterioration of their performance, which makes large-scale expensive multiobjective optimization challenging. To address this challenge, we develop a large-scale multiobjective evolutionary algorithm guided by low-dimensional surrogate models of scalarization functions. The proposed algorithm (termed LDS-AF) reduces the dimension of the original decision space based on principal component analysis, and then directly approximates the scalarization functions in a decompositionbased multiobjective evolutionary algorithm. With the help of a two-stage modeling strategy and convergence control strategy, LDS-AF can keep a good balance between convergence and diversity, and achieve a promising performance without being trapped in a local optimum prematurely. The experimental results on a set of test instances have demonstrated its superiority over eight state-of-the-art algorithms on multiobjective optimization problems with up to 1000 decision variables using only 500 real function evaluations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call