Abstract

Many real-world optimization problems can be stated in terms of submodular functions. Furthermore, these real-world problems often involve uncertainties which may lead to the violation of given constraints. A lot of evolutionary multi-objective algorithms following the Pareto optimization approach have recently been analyzed and applied to submodular problems with different types of constraints. We present a first runtime analysis of evolutionary multi-objective algorithms based on Pareto optimization for chance-constrained submodular functions. Here the constraint involves stochastic components and the constraint can only be violated with a small probability of α. We investigate the classical GSEMO algorithm for two different bi-objective formulations using tail bounds to determine the feasibility of solutions. We show that the algorithm GSEMO obtains the same worst case performance guarantees for monotone submodular functions as recently analyzed greedy algorithms for the case of uniform IID weights and uniformly distributed weights with the same dispersion when using the appropriate bi-objective formulation. As part of our investigations, we also point out situations where the use of tail bounds in the first bi-objective formulation can prevent GSEMO from obtaining good solutions in the case of uniformly distributed weights with the same dispersion if the objective function is submodular but non-monotone due to a single element impacting monotonicity. Furthermore, we investigate the behavior of the evolutionary multi-objective algorithms GSEMO, NSGA-II and SPEA2 on different submodular chance-constrained network problems. Our experimental results show that the use of evolutionary multi-objective algorithms leads to significant performance improvements compared to state-of-the-art greedy algorithms for submodular optimization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.