Abstract

In this study, particulate matter was investigated as the primary pollutant in the air quality of Beijing Metro transfer stations, and passenger thermal comfort during the transfer process was evaluated by using the relative warmth index (RWI). Passenger thermal comfort level is not ideal in 87% of the measured space and is slightly hot overall, with an RWI range of 0.20–0.43. Although 20% of the measured space has lower values than ASHRAE’s cooling comfort class, the thermal comfort level of most measured space is good in winter morning rush hours, with an RWI range from −0.18 to 0.28. The particulate matter (PM) concentration is related not only to the season and spatial depth but also to the transfer design of the metro station. During the morning rush period, the concentration ranges difference of PM10 and PM2.5 in winter are 262.9 μg/m3 and 125.5 μg/m3, respectively, which are 1.43 and 1.46 times higher than those of in summer. There are significant differences in the PM concentration and RWI values between the island and lateral platforms of Beijing Metro transfer stations, and the design of the lateral platform is superior to that of the island platform. Another exploratory experiment is conducted to determine if the PM concentration has a potential effect on human metabolic rate. The data in this paper provide a valuable reference for further comfort research and environmental control in metro station, and the conclusions may guide the further underground space design of metro transfer stations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.