Abstract

This study explored the effect of ammonia-N exposure on the muscle quality of Penaeus vannamei and the underlying mechanisms based on the oxidation of lipids and proteins. Acute ammonia-N exposure reduced the hardness but increased the centrifugal loss and drip loss of the shrimp muscle. Meanwhile, reactive oxygen species and reactive nitrogen species were overproduced, thereby increasing the free fatty acid (FFA) content, fluorescent compound content, peroxide value (PV), and thiobarbituric acid reactive substance (TBAR) value. In addition, lipid peroxidation byproducts and free radicals could reduce sulfhydryl (SH) content and intrinsic fluorescence intensity. They may also increase carbonyl concentration, disulfide bond (SS) content, and surface hydrophobicity, and degrade myofibrillar protein, leading to the unfolding and conformational alterations in proteins in shrimp muscle. This study provided significant insights into the mechanisms underlying the impacts of ammonia toxicity on the quality of shrimp muscle.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call