Abstract
The comparative assessment of a variety of microplastic contamination on various soil types hasn't been extensively explored in existing literature. The present study focuses on the comparative analysis of the impact of environmentally relevant concentrations of LDPE, HDPE, and PVC microplastic contamination (2 %, 4 %, and 6 %) on index properties and strength parameters of sandy, silty and clayey soil types at varying observation days 5,10,15,20,25, and 30 days. Extensive experimental investigations are carried out to understand the effect of contamination on moisture content, specific gravity, liquid limit, plastic limit, plasticity index, optimum moisture content, maximum dry density, and shear strength parameters of the respective soil type. It is observed that the depletion in Atterberg's limits is found more in the case of clayey soil as compared to silty soil because clayey soils consist of large specific surface areas leading to van der Waals force of attraction being the predominant force between particles, compared with silty soil which is affected by microplastic addition leading to decrease in net attractive forces. In the case of clayey soil maximum depletion of liquid limit up to 168 %, plastic limit up to 33 %, plasticity index (136 %), and optimum moisture content (9.04 %) is observed for PVC microplastic. The deduction in maximum dry density values is observed more for sandy soil (0.59 g/cc) followed by silty soil (0.21 g/cc) and clayey soil (0.12 g/cc). The maximum depletion of moisture content(delta-8 %), shear strength (delta-0.89 kg/cm2), and maximum dry density (delta-0.44 g/cc) is observed in the case of sandy soil for PVC and LDPE microplastic contamination. Significant depletion in optimum moisture content is observed in the case of clayey soil (9.57 %) compared to sandy (5.62 %) and silty soil (5.3 %). An increase in cohesion is observed for sandy soil (0.09 kg/cm2) and a decrease for clayey (0.19 kg/cm2) and silty soil (0.19 kg/cm2). The angle of internal friction is reduced in the case of clayey soil (∆-14.380) followed by silty soil (∆-11.230) and sandy soil (∆-11.020). For silty soil maximum depletion of specific gravity(delta-1.06) and cohesion (0.192 kg/cm2) is observed for LDPE and HDPE microplastic. The sandy soil type is most affected due to microplastic contamination irrespective of the type of microplastic contamination followed by clayey soil and the silty soil type is least affected. The maximum overall shear strength is reduced due to microplastic contamination in all the soil types.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have