Abstract
The applicability of artificial neural networks (ANN) for the identification of vegetation types using satellite multispectral imagery was studied. The study was focused on the three main vegetation types found in the south of the Krasnoyarsk Region: mixed forest, boreal forest and grassland. Sentinel-2 satellite images were used as a data source for the neural networks. It was shown that vegetation type can be identified pixel-by-pixel using 12 spectral channels and simple feed forward ANN with good quality and reliability. Analysis of the input layer of the trained neural networks allowed several spectral bands to be selected that were the most valuable for the ANN decision and not used in the classic NDVI vegetation index.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have