Abstract

The transport of fungal-derived compounds from Trametes versicolor to the environment was investigated. Fatty acids and sphingoids were identified at the outlet of a bioreactor containing an acidic nutrient solution and immobilized fungal mycelia. The analyses were conducted using UHPLC-Q-TOF-MS (/MS). Eleven fatty acids, including C20:0, C18:1-OH and C20:0-OH that have not been previously described for this species, were detected. The identities of myristic acid (C14:0), palmitic acid (C16:0) and stearic acid (C18:0) were confirmed using reference standards. Six sphingoids, including Sph (t18:0), Sph (t18:1), Sph (d18:0), Sph (d18:1), Sph (d16:0) and Sph (d16:1), were tentatively identified, and the identities of Sph (d18:0) and Sph (d18:1) were confirmed by reference standards. The findings show that an array of compounds, with concentrations at the μgL-1 level, was easily transported from the fungal mycelia. This is of concern when the investigated species is used in biodegradation experiments of xenobiotics and conclusions are to be drawn on the quality of the treated water. The study thus shows that the chemical composition of water treated with Trametes versicolor is also influenced by the immobilized fungus itself. The lipids that were detected, including fatty acids and sphingoids do not present any threat to the environment since they are not toxic. At μgL-1 concentration levels, they are soluble in water.

Highlights

  • The enzyme-catalysed biodegradation of environmentally hazardous compounds in lab-scale experiments is well documented, including research that has studied the biodegradation potential of extracellular enzymes secreted by white rot fungi (WRF) mycelia [1].The particular interest in these fungal species is related to their effective biodegradation of recalcitrant pharmacologically active compounds including endocrine disrupting compounds (EDCs) [2,3]

  • Diclofenac d-4 was present at a concentration of 100 μgL-1.The detected compounds were present at approximate μgL-1 levels

  • Eleven fatty acids (FAs) were detected as ammonium adducts ions using positive mode electrospray ionization (ESI)

Read more

Summary

Introduction

The enzyme-catalysed biodegradation of environmentally hazardous compounds in lab-scale experiments is well documented, including research that has studied the biodegradation potential of extracellular enzymes secreted by white rot fungi (WRF) mycelia [1].The particular interest in these fungal species is related to their effective biodegradation of recalcitrant pharmacologically active compounds including endocrine disrupting compounds (EDCs) [2,3]. These studies typically emphasize three objectives: (A) removal of target compounds; (B) correlation of this removal to measured enzymatic activities; and (C) identification of degradation products, including toxicity assessments [4,5,6].

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call