Abstract

We hypothesized that the polyunsaturated fatty acids of the butterfly were probably derived from the diet and that there might be a great loss of body fat during metamorphosis. To substantiate these hypotheses, we analyzed the fatty acid composition and content of the diet, the larva, and the butterfly Morpho peleides. Both the diet and the tissues of the larva and butterfly had a high concentration of polyunsaturated fatty acids. In the diet, linolenic acid accounted for 19% and linoleic acid for 8% of total fatty acids. In the larva, almost 60% of the total fatty acids were polyunsaturated: linolenic acid predominated at 42% of total fatty acids, and linoleic acid was at 17%. In the butterfly, linolenic acid represented 36% and linoleic acid represented 11% of total fatty acids. The larva had a much higher total fatty acid content than the butterfly (20.2 vs. 6.9 mg). Our data indicate that the transformation from larva to butterfly during metamorphosis drastically decreased the total fatty acid content. There was bioenhancement of polyunsaturated fatty acids from the diet to the larva and butterfly. This polyunsaturation of membranes may have functional importance in providing membrane fluidity useful in flight.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call