Abstract

Ischemic stroke remains a leading cause of mortality and long-term disability worldwide, necessitating efforts to identify biomarkers for diagnosis, prognosis, and treatment monitoring. The present study aimed to identify novel plasma biomarkers of neurodegeneration and inflammation in a mouse model of stroke induced by distal middle cerebral artery occlusion. Using targeted lipidomic and global untargeted metabolomic profiling of plasma collected from aged male mice 24 h after stroke and weekly thereafter for 7 weeks, we discovered distinct acute and chronic signatures. In the acute phase, we observed elevations in myelin-associated lipids, including sphingomyelin (SM) and hexosylceramide (HCER) lipid species, indicating brain lipid catabolism. In the chronic phase, we identified 12-hydroxyeicosatetraenoic acid (12-HETE) as a putative biomarker of prolonged inflammation, consistent with our previous observation of a biphasic pro-inflammatory response to ischemia in the mouse brain. These results provide insight into the metabolic alterations detectable in the plasma after stroke and highlight the potential of myelin degradation products and arachidonic acid derivatives as biomarkers of neurodegeneration and inflammation, respectively. These discoveries lay the groundwork for further validation in human studies and may improve stroke management strategies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.