Abstract
The concept that fat supplementation impairs total-tract fiber digestibility in ruminants has been widely accepted over the past decades. Nevertheless, the recent interest in the dietary fatty acid profile to dairy cows enlightened the possible beneficial effect of specific fatty acids (e.g., palmitic, stearic, and oleic acids) on total-tract fiber digestibility. Because palmitic, stearic, and oleic acids are the main fatty acids present in ruminal bacterial cells, we hypothesize that the dietary supply of these fatty acids will favor their incorporation into the bacterial cell membranes, which will support the growth and enrichment of fiber-digesting bacteria in the rumen. Our objective in this experiment was to investigate how dietary supply of palmitic, stearic, and oleic acid affect fiber digestion, bacterial membrane fatty acid profile, microbial growth, and composition of the rumen bacterial community. Diets were randomly assigned to 8 single-flow continuous culture fermenters arranged in a replicated 4 × 4 Latin square with four 11-d experimental periods. Treatments were (1) a control basal diet without supplemental fatty acids (CON); (2) the control diet plus palmitic acid (PA); (3) the control diet plus stearic acid (SA); and (4) the control diet plus oleic acid (OA). All fatty acid treatments were included in the diet at 1.5% of the diet (dry matter [DM] basis). The basal diet contained 50% orchardgrass hay and 50% concentrate (DM basis) and was supplied at a rate of 60 g of DM/d in 2 equal daily offers (0800 and 1600 h). Data were analyzed using a mixed model considering treatments as fixed effect and period and fermenter as random effects. Our results indicate that PA increased in vitro fiber digestibility by 6 percentage units compared with the CON, while SA had no effect and OA decreased fiber digestibility by 8 percentage units. Oleic acid decreased protein expression of the enzymes acetyl-CoA carboxylase compared with CON and PA, while fatty acid synthase was reduced by PA, SA, and OA. We observed that PA, but not SA or OA, altered the bacterial community composition by enhancing bacterial groups responsible for fiber digestion. Although the dietary fatty acids did not affect the total lipid content and the phospholipid fraction in the bacterial cell, PA increased the flow of anteiso C13:0 and anteiso C15:0 in the phospholipidic membrane compared to the other treatments. In addition, OA increased the flow of C18:1 cis-9 and decreased C18:2 cis-9,cis-12 in the bacterial phospholipidic membranes compared to the other treatments. Palmitic acid tended to increase bacterial growth compared to other treatments, whereas SA and OA did not affect bacterial growth compared with CON. To our knowledge, this is the first research providing evidence that palmitic acid supports ruminal fiber digestion through shifts in bacterial fatty acid metabolism that result in changes in growth and abundance of fiber-degrading bacteria in the microbial community.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.