Abstract

In this research, the Stewart-Cazacu micromechanics coupled damage model is extended and validated adding nucleation and coalescence models as new damage mechanisms. The Ti–6Al–4V titanium alloy is chosen as a suitable hcp ductile material to be modeled using this extended damage law. The characterization of the damage evolution in this alloy is addressed throughout a quasi-static experimental campaign. Damage characterization relies on in situ X-ray tomography data and scanning electron microscopy imaging technique. The validation procedure consists in the implementation into the finite element research software Lagamine of ULiège and in the comparison of numerical predictions and experimental results. Load–displacement curves and damage-related state variables at fracture configuration from smooth and notched bar specimens submitted to tensile tests are analyzed. The nucleation and coalescence model extensions as well as an accurate elastoplastic and damage material parameter identification for Ti–6Al–4V samples are essential features to reach a validated model. The prediction capabilities exhibited for large strains are in good agreement with experimental results, while the near-fracture strains can still be improved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.