Abstract

The wear of a polymer composite sprocket primarily depends on contact pressure and sliding velocity that vary significantly during service. The sliding distance and contact pressure at the sprocket/roller interface were estimated for a pristine polymer composite sprocket engaged with a standard and a 3% extended steel chain by employing the explicit finite element method. A set of experiments was executed to find the friction and wear coefficients of sprocket material using polyamide 66 composite pins and standard steel disc at sliding speeds of 1, 2, and 3 m/s and normal loads of 10, 20, 30, and 40 N. The wear depth is estimated after getting friction and wear coefficients experimentally, and contact pressure and sliding distance numerically. Archard wear model was executed using the UMESHMOTION subroutine with the Arbitrary Lagrangian-Eulerian technique in ABAQUS. The peak contact pressure on the sprocket is increased approximately by 1.5 times as the chain elongates from 0% to 3%. A pristine sprocket engaging a 3% extended chain after one lakh cycles experienced an approximate wear depth of 90 µm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.