Abstract
We compute the shortest sequence of local connectivity modifications that transform a genus 0 quad mesh to a polycube. The modification operations are (dual) loop preserving and thus, we are restricted to quad meshes where loops don't self-intersect and two loops intersect at most twice. The intersection patterns of the loops are encoded in a simplicial complex, which we call loop complex. To formulate the modification search over the loop complex, we characterise polycubes combinatorially and determine dependencies between modifications. We show that the full task can be encoded as a mixed-integer problem that is solved by a commodity MIP-solver. We demonstrate the practical feasibility by a number of examples with varying complexity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.