Abstract

In this work, we propose the nonalloyed Schottky Source/Drain (SSD) technology for high voltage InAlN/GaN HEMTs. The proposed device features excellent metal morphology both in lateral and vertical benefiting from the removal of metallic overflow associated with the conventional alloyed Ohmic contacts, which bodes well for device scaling and high breakdown voltage (BV) obtained in the proposed device. The nonalloyed Source/Drain (S/D) also paves the way for the SSD HEMTs using a gate-first fabrication process with the standard Ni/Au gate stack. Despite the Schottky Source/Drain, an SSD HEMT with LG=1.25μm exhibits a decent maximum drain current of 575mA/mm and peak transconductance of 216mS/mm. The corresponding BV is 58V which is the highest BV reported on GaN HEMTs for a short LGD of 250nm. Without using any field-plate structure, the BV of 605V is achieved in an SSD HEMT with LGD=15μm, realizing 229% improvement compared with the conventional InAlN/GaN HEMTs. The proposed SSD technology featuring scaling capability and high breakdown voltage is suitable for RF power applications and can be further developed for self-aligned InAlN/GaN HEMTs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.