Abstract

Parametric transducers can work below the quantum limit of sensitivity for resonant mass gravitational wave detectors. This makes them a promising alternative for electromechanical transductance for such detectors. These transducers consist of a reentrant superconducting niobium cavity coupled to a mass-spring system with three mechanical modes. These cavities have a central post responsible for creating a narrow axial gap between its top and the cavity wall, which is a resonant membrane. Their displacement sensitivity (df/dx) increases as the gap spacing decreases. However, this is not a linear relationship and the dimensioning of the cavity becomes critical if the gap is of the order of a few microns. In this paper, we describe how to obtain a gap spacing of ∼ 3 μ m and also the development of parametric transducers that will be employed in the coming experimental runs of the Schenberg gravitational wave antenna. Mechanical thinning methods were performed followed by mechanical and electrical frequency measurements to tune the device to operate at the required frequencies. The main results present better frequency stability and an improvement of df/dx by one order of magnitude higher than the preceding models. These results will allow us to reach the quantum limit of detector sensitivity of ∼ 10−22 Hz−1/2 in the near future, making it possible to search for gravitational waves around 3.2 kHz.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.