Abstract
Heat treatments can have considerable influence on the droplet size distribution of oil-in-water emulsions. In the present study, high-pressure (HP) pasteurisation and sterilisation were evaluated as alternatives for heat preservation of emulsions. HP conditions used were 600 MPa, 5 min, room temperature and 800 MPa, 5 min, 80 °C initial temperature, 115 °C maximum temperature for HP pasteurisation and HP sterilisation respectively. The effects on droplet size of these conditions were compared to heat treatments for whey protein isolate (WPI) and soy protein isolate (SPI) emulsions at two pH values and two ionic strengths. For WPI, also the effect of protein in the bulk phase was evaluated. Both HP and heat pasteurisation treatments resulted in similar or slightly decreased average droplet sizes compared to the untreated samples. For neutral SPI emulsions, heat sterilisation increased the average droplet size from 1.6 μm to 43.7 μm, while HP sterilisation resulted only in a small increase towards an average droplet size of 2.1 μm. The neutral WPI emulsions, except those with a high ionic strength, gave similar results with respect to the droplet size, showing that for neutral pH WPI or SPI emulsions HP sterilisation is preferable above heat sterilisation. Concerning the low pH WPI emulsions, the droplet sizes were unaffected after both heat and HP sterilisation. Heat pasteurisation and sterilisation are effective treatments to preserve food products that are based on emulsions with respect to microbial safety. However, heat treatments can negatively affect emulsion stability. Currently, in addition to high pressure at room temperature, high-pressure treatments at elevated temperature received a great deal of interest to achieve sterilised products. This study evaluated the effects of both heat and high-pressure pasteurisation and sterilisation on droplet size of whey protein isolate and soy protein isolate emulsions. It was shown that for pasteurisation treatments, both heat and high pressure have minor effects on the droplet size of the emulsion. However, for sterilisation purposes high-pressure treatment is preferable for emulsion at neutral pH. High-pressure sterilisation can therefore be interesting alternatives to heat treatments to preserve emulsion stability.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have