Abstract
This paper presents the design, fabrication and characterization of quartz tuning fork temperature sensor which is based on new ZY-cut-quartz crystal bulk acoustic wave resonator vibrating in a flexural mode. Design and performance analysis of the quartz tuning fork temperature sensor has been conducted and the thermal sensing characteristics were examined by measuring the resonance frequency shift of this sensor cause by an external temperature. The sensor prototype was successfully fabricated and calibrated from operating from 0°C to 100°C with sensitivity of 70ppm/°C. Experimental results show the sensor has high thermal sensitivity, good stability and well reproducibility. This work represents high precision and low power temperature sensor using the comprehensive thermal characterization of ZY-cut-quartz tuning fork resonator.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.