Abstract

In this paper, a low cost quartz tuning fork temperature sensor adopting H-shaped tuning fork resonator to address miniaturization, high resolution and high stability has been designed, developed and tested. The quartz tuning temperature sensor is designed vibrating in flexural mode with a new thermo-sensitive cut. The quartz tuning fork temperature sensor consists of two prongs connected at one end of crystalline quartz plate with thin-film metal electrodes deposited on the faces, which is used to produce vibration in response to alternating voltages and detecting the resonance frequency in the meantime. When an external temperature is change, there is a shift in its natural frequency. Based on this principle, a resonant thermometer is designed. Finite element method is used to analyze the vibratory modes and optimize the structure. The whole structure is 500μm thickness, the length of tuning fork arm is 3076μm and the width of tuning fork arm is 600um, the frequency of tuning fork is about 37kHz with a sensitivity of rough 85 ppm/°C. The experimental results shown that a temperature accuracy of 0.01 °C and a resolution of 0.005 °C within temperature range from 0 °C to 100 °C. All these research are helpful to design satisfactory performance of the sensor for temperature measurement.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.