Abstract

In addition to the advantages of asynchronous circuits, compatibility with synchronous EDA tools is another strength point of synchronous elastic circuits. Synchronous elastic circuits face some challenges, such as process variations that can compromise its performance and functionality, and the multitude of available implementations based on elastic elements’ combinations, meaning that choosing the best combination could not be simple. In this paper, a novel method is introduced to model and verify synchronous elastic circuits in the presence of variations. The model is based on xMAS, which is a new formal modeling paradigm to synthesize, test, and verify circuits and networks. In this method, various elastic elements are modeled and available in the form of a library in xMAS, so the designer can build complicated elastic circuits by combining different elastic elements. Additionally, by translating a high-level xMAS model into a SAN statistical model and using its capabilities, elements’ internal delays will be embedded, which makes the high-level modeling and elastic circuits’ high-resolution time analysis available. Based on the obtained results, elastic circuits are highly capable of tolerating variations. However, this phenomenon could lead to a maximum of 2.35% error in synchronization control units and data in these circuits.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call