Abstract

European agriculture policies emphasize the importance of agricultural sustainability, focusing on increase of biodiversity through crop diversification. In Mediterranean dryland cropping systems, the introduction of crops in rotation with cereals is challenged by scarce precipitation and high evapotranspiration. In this scenario, camelina (Camelina sativa (L.) Crantz), a low-input annual oleaginous crop with a high morphological plasticity, short life cycle, and interesting oil and meal composition, could be an option to be included in rotation with winter cereals. The aim of this experiment was to study the agronomic performance, and seed oil and meal protein contents of camelina in two different climatic conditions, with a sowing delay in one of them. Several trials were conducted in Montargull (Mediterranean semihumid) and in Lleida (Mediterranean semiarid) in two seasons (2020–21 and 2021–22). In Montargull, two sowing dates (November, SD1 and January, SD2) were established. In each growing condition, three spring camelina varieties were sown (Calena, CO46 and GP204). Camelina was harvested between May and July, and yield and harvest index were measured. After cold pressing the seeds, seed oil and meal protein contents were analysed. Camelina yield and quality was not related to the variety, but to two climatic scenarios: 1) a favourable rainfall distribution without important drought periods (2020–21); 2) significant rainfalls in November and April, but with a drought period in between (2021–22). In the first situation, camelina production ranged from 1533 to 2187 kg ha−1, with high seed oil (40.4–41.4 %) and meal protein (41.0–44.8 %) contents. In the second situation, the yield decreased to 242–661 kg ha−1, seed oil content to 31.0–34.7 %, and meal protein content to 37.6–40.4 %. Despite these seasonal differences, SD1 in Montargull obtained higher average yields and protein content than in Lleida and in SD2. In contrast, in Lleida and in SD2 in Montargull camelina produced higher oil content. The implementation of camelina into Mediterranean dryland crop rotation systems is feasible. Considering the importance of moisture in these climatic conditions, the use of no-till practices is recommended in dryland fields to avoid excessive water loss, while the use of camelina in irrigated fields could be explored. However, more long-term agronomic and industrial research is still needed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.