Abstract
Understanding the effects of climate change on cotton fiber quality will reduce the risks to production caused by global warming. Machine learning algorithms are effective for forecasting climate impacts on crops. However, the impact of climate change on cotton fiber quality is unclear. Hence, a hybrid machine learning-enabled approach, the Bayesian model average (BMA) method with multiple machine learning algorithms (linear regressor, SVR, RFR, GBDT, LightGBM, and XGBoost) and bootstrap resampling, was developed to explore the impact and screen the important climatic factors affecting various traits of fiber quality. On the basis of fiber quality data from 1033 test stations across Xinjiang, China, from 2016 to 2022, the explained variance for climate change in the hybrid machine learning model was as follows: 44.72 %–50.55 % for white cotton grade, 44.06 %–53.95 % for length, 51.72 %–56.81 % for micronaire, 32.70 %–49.50 % for length uniformity, and 45.66 %–53.09 % for strength in the 1000 bootstrapping samples. In addition, recursive feature elimination with cross-validation (RFECV) was used to select the optimal feature set and calculate the contribution of each feature. The variability in micronaire in the hybrid model was affected primarily by climate factors, such as the daily minimum temperature, rainfall, and wind speed, whereas the other quality traits were affected mainly by radiation-related climatic indicators. The climate during the harvest stage in October had a significant effect on cotton quality, explaining 33.0 % of the variance in white cotton grade, 32.1 % in length, and 48.3 % in fiber strength. Conversely, the climate during the boll opening and early harvest stages in September had a greater influence on micronaire and length uniformity, accounting for 21.4 % and 37.2 % of the variance, respectively. This study highlights that climate change explains nearly 50 % of the variation in fiber quality, with the influence being notably more considerable during the later stages of the cotton growth period. These findings clarify the uncertainty in the impact of climate change on cotton fiber quality considering the uncertainty of the single machine model and model errors. Equally important, this information can be valuable for farmers and growers seeking to improve fiber quality under climate change.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.