Abstract
One of the central questions in microbial ecology is how to explain the high biodiversity of communities. A large number of rare taxa in the community have not been excluded by abundant taxa with competitive advantages, a contradiction known as the biodiversity paradox. Recently, increasing evidence has revealed the central importance of antimicrobial toxins as crucial weapons of antagonism in microbial survival. The powerful effects of antimicrobial toxins result in simple combinations of microorganisms failing to coexist under laboratory conditions, but it is unclear whether they also have a negative impact on the biodiversity of natural communities. Here, we revealed that microbial communities worldwide universally possess functional potential for antimicrobial toxin production. Counterintuitively, the biodiversity of global microbial communities increases, rather than decreases, as the abundance of antimicrobial toxins in rare taxa rises. Rare taxa may encode more antimicrobial toxins than abundant taxa, which is associated with the maintenance of the high biodiversity of microbial communities amid complex interactions. Our findings suggest that the antagonistic interaction caused by antimicrobial toxins may play a positive role in microbial community biodiversity at the global scale.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have