Abstract
Iron plays a pivotal role in regulating ocean primary productivity. Iron is supplied from diverse sources such as the atmosphere and the geosphere, and hence iron biogeochemical research has focused on identifying and quantifying such sources of "new" iron. However, the recycling of this new iron fuels up to 90% of the productivity in vast oceanic regions. Evidence points to the key role of microbes in mediating this recycling, referred to as the "ferrous wheel", that remobilises iron initially supplied to ocean biota. In the iron-limited subantarctic waters of the Southern Ocean, iron uptake is dominated by microbes smaller than 2μm and exhibits seasonal and depth-related variations. The microbial community within the <2μm size fraction comprises heterotrophic bacteria and picophytoplankton, both competing for iron. Here, we dissect the demand component of the ferrous wheel by separately assessing iron uptake by heterotrophic bacteria and photoautotrophic picophytoplankton. To explore the seasonal and depth-related variability in iron uptake, the influence of light on iron uptake in both bacterial and phytoplankton communities was examined. We observed that picoeukaryote phytoplankton demonstrated iron uptake rates 10 times greater than those observed in bacteria when normalized to biomass. Light was shown to stimulate iron uptake by 8- to 16-fold in phytoplankton and by 4- to 8-fold in heterotrophic bacteria. These results highlight the unexpectedly significant role of picoeukaryotic phytoplankton in driving the speed of the ferrous wheel, with implications for iron recycling across diurnal cycles, different oceanic depths, and seasonally.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have