Abstract

Given two planar sets A and B, we examine the problem of determining the smallest ϵ such that there is a Euclidean motion (rotation and translation) of A that brings each member of A within distance ϵ of some member of B. We establish upper bounds on the combinatorial complexity of this subproblem in model-based computer vision, when the sets A and B contain points, line segments, or (filled-in) polygons. We also show how to use our methods to substantially improve on existing algorithms for finding the minimum Hausdorff distance under Euclidean motion.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.