Abstract

Previous article No AccessGaseous Metabolism and Water Relations of the Zebra Finch, Taeniopygia castanotisWilliam A. CalderWilliam A. Calder Search for more articles by this author PDFPDF PLUS Add to favoritesDownload CitationTrack CitationsPermissionsReprints Share onFacebookTwitterLinkedInRedditEmail SectionsMoreDetailsFiguresReferencesCited by Volume 37, Number 4Oct., 1964 Article DOIhttps://doi.org/10.1086/physzool.37.4.30152758 Views: 21Total views on this site Citations: 127Citations are reported from Crossref Journal History This article was published in Physiological Zoology (1928-1998), which is continued by Physiological and Biochemical Zoology (1999-present). PDF download Crossref reports the following articles citing this article:Anaïs Pessato, Andrew E. McKechnie, Mylene M. Mariette A prenatal acoustic signal of heat affects thermoregulation capacities at adulthood in an arid-adapted bird, Scientific Reports 12, no.11 (Apr 2022).https://doi.org/10.1038/s41598-022-09761-1Sara E. Lipshutz, Clara R. Howell, Aaron M. Buechlein, Douglas B. Rusch, Kimberly A. Rosvall, Elizabeth P. Derryberry How thermal challenges change gene regulation in the songbird brain and gonad: Implications for sexual selection in our changing world, Molecular Ecology 31, no.1313 (May 2022): 3613–3626.https://doi.org/10.1111/mec.16506Philip C. Withers, Christine E. Cooper, Alexander N. Larcombe Relative Water Economy Is a Useful Index of Aridity Tolerance for Australian Poephiline Finches, Birds 3, no.22 (Mar 2022): 172–183.https://doi.org/10.3390/birds3020012Sydney F. Hope, Louise Schmitt, Olivier Lourdais, Frédéric Angelier Nature vs. Nurture: Disentangling the Influence of Inheritance, Incubation Temperature, and Post-Natal Care on Offspring Heart Rate and Metabolism in Zebra Finches, Frontiers in Physiology 13 (May 2022).https://doi.org/10.3389/fphys.2022.892154Callum S. McDiarmid, Laura L. Hurley, Madiline Le Mesurier, Andrew C. Blunsden, Simon C. Griffith The impact of diet quality on the velocity, morphology and normality of sperm in the zebra finch Taeniopygia guttata, Journal of Experimental Biology 225, no.99 (May 2022).https://doi.org/10.1242/jeb.243715Kyle Coughlan, Edyta T. Sadowska, Ulf Bauchinger Declining haematocrit with increasing age in a population of male zebra finches Taeniopygia guttata, Journal of Avian Biology 2022, no.55 (Mar 2022).https://doi.org/10.1111/jav.02921Elisavet Zagkle, Paola Alexandra Martinez-Vidal, Ulf Bauchinger, Edyta T. Sadowska Manipulation of Heat Dissipation Capacity Affects Avian Reproductive Performance and Output, Frontiers in Ecology and Evolution 10 (Apr 2022).https://doi.org/10.3389/fevo.2022.866182Simon Tapper, Joshua K. R. Tabh, Glenn J. Tattersall, and Gary Burness Changes in Body Surface Temperature Play an Underappreciated Role in the Avian Immune Response, Physiological and Biochemical Zoology 95, no.22 (Jan 2022): 152–167.https://doi.org/10.1086/718410C.M. Coomes, E.P. Derryberry High temperatures reduce song production and alter signal salience in songbirds, Animal Behaviour 180 (Oct 2021): 13–22.https://doi.org/10.1016/j.anbehav.2021.07.020Michael Briga, Simon Verhulst, Steven Portugal Mosaic metabolic ageing: Basal and standard metabolic rates age in opposite directions and independent of environmental quality, sex and life span in a passerine, Functional Ecology 35, no.55 (Mar 2021): 1055–1068.https://doi.org/10.1111/1365-2435.13785Raymond M. Danner, Casey M. Coomes, Elizabeth P. Derryberry Simulated heat waves reduce cognitive and motor performance of an endotherm, Ecology and Evolution 11, no.55 (Jan 2021): 2261–2272.https://doi.org/10.1002/ece3.7194Michał S. Wojciechowski, Anna Kowalczewska, Roger Colominas-Ciuró, Małgorzata Jefimow Phenotypic flexibility in heat production and heat loss in response to thermal and hydric acclimation in the zebra finch, a small arid-zone passerine, Journal of Comparative Physiology B 191, no.11 (Oct 2020): 225–239.https://doi.org/10.1007/s00360-020-01322-0Elisavet Zagkle, Marta Grosiak, Ulf Bauchinger, Edyta T. Sadowska Rest-Phase Hypothermia Reveals a Link Between Aging and Oxidative Stress: A Novel Hypothesis, Frontiers in Physiology 11 (Dec 2020).https://doi.org/10.3389/fphys.2020.575060Paulina Anna Szafrańska, Fredrik Andreasson, Andreas Nord, Jan-Åke Nilsson Deep body and surface temperature responses to hot and cold environments in the zebra finch, Journal of Thermal Biology 94 (Dec 2020): 102776.https://doi.org/10.1016/j.jtherbio.2020.102776Anaïs Pessato, Andrew E. McKechnie, Katherine L. Buchanan, Mylene M. Mariette Vocal panting: a novel thermoregulatory mechanism for enhancing heat tolerance in a desert-adapted bird, Scientific Reports 10, no.11 (Nov 2020).https://doi.org/10.1038/s41598-020-75909-6Christine Elizabeth Cooper, Laura Leilani Hurley, Pierre Deviche, Simon Charles Griffith Physiological responses of wild zebra finches ( Taeniopygia guttata ) to heatwaves, The Journal of Experimental Biology 223, no.1212 (May 2020): jeb225524.https://doi.org/10.1242/jeb.225524Vincent Careau, Mylene M. Mariette, Ondi Crino, William A. Buttemer, Katherine L. Buchanan Repeatability of behavior and physiology: No impact of reproductive investment, General and Comparative Endocrinology 290 (May 2020): 113403.https://doi.org/10.1016/j.ygcen.2020.113403Shangzhe Xie, Lucy Woolford, Todd J. McWhorter Organ Histopathology and Hematological Changes Associated With Heat Exposure in Australian Desert Birds, Journal of Avian Medicine and Surgery 34, no.11 (Mar 2020): 41.https://doi.org/10.1647/1082-6742-34.1.41C.E. Cooper, L.L. Hurley, S.C. Griffith Effect of acute exposure to high ambient temperature on the thermal, metabolic and hygric physiology of a small desert bird, Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology (Feb 2020): 110684.https://doi.org/10.1016/j.cbpa.2020.110684Caterina Funghi, Luke S.C. McCowan, Wiebke Schuett, Simon C. Griffith High air temperatures induce temporal, spatial and social changes in the foraging behaviour of wild zebra finches, Animal Behaviour 149 (Mar 2019): 33–43.https://doi.org/10.1016/j.anbehav.2019.01.004Andreas Nord, Jan‐Åke Nilsson, Steven Portugal Heat dissipation rate constrains reproductive investment in a wild bird, Functional Ecology 33, no.22 (Dec 2018): 250–259.https://doi.org/10.1111/1365-2435.13243Casey M. Coomes, Raymond M. Danner, Elizabeth P. Derryberry Elevated temperatures reduce discrimination between conspecific and heterospecific sexual signals, Animal Behaviour 147 (Jan 2019): 9–15.https://doi.org/10.1016/j.anbehav.2018.10.024Christine Elizabeth Cooper, Philip Carew Withers, Laura Leilani Hurley, Simon Charles Griffith , Frontiers in Physiology 10 ( 2019).https://doi.org/10.3389/fphys.2019.01405Jiayue Yan, Juli Broggi, Josué Martínez-de la Puente, Rafael Gutiérrez-López, Laura Gangoso, Ramón Soriguer, Jordi Figuerola Does bird metabolic rate influence mosquito feeding preference?, Parasites & Vectors 11, no.11 (Feb 2018).https://doi.org/10.1186/s13071-018-2708-9Samuel C. Andrew, Henrik Jensen, Ingerid J. Hagen, Sarah Lundregan, Simon C. Griffith Signatures of genetic adaptation to extremely varied Australian environments in introduced European house sparrows, Molecular Ecology 27, no.2222 (Oct 2018): 4542–4555.https://doi.org/10.1111/mec.14897Callum S McDiarmid, Marc Naguib, Simon C Griffith Calling in the heat: the zebra finch “incubation call” depends on heat but not reproductive stage, Behavioral Ecology 135 (Oct 2018).https://doi.org/10.1093/beheco/ary123Shangzhe Xie, Rick Tearle, Todd J. McWhorter Heat Shock Protein Expression is Upregulated after Acute Heat Exposure in Three Species of Australian Desert Birds, Avian Biology Research 11, no.44 (Feb 2019): 263–273.https://doi.org/10.3184/175815618X15366607700458Alexander J. Hoffman, John W. Finger, Haruka Wada Early stress priming and the effects on fitness-related traits following an adult stress exposure, Journal of Experimental Zoology Part A: Ecological and Integrative Physiology 329, no.6-76-7 (Jun 2018): 323–330.https://doi.org/10.1002/jez.2190Jan-Åke Nilsson, Andreas Nord Testing the heat dissipation limit theory in a breeding passerine, Proceedings of the Royal Society B: Biological Sciences 285, no.18781878 (May 2018): 20180652.https://doi.org/10.1098/rspb.2018.0652J. W. Finger, A. J. Hoffman, H. Wada Temporal variation in constitutive and inducible heat shock proteins in the Zebra Finch Taeniopygia guttata, Ibis 160, no.22 (Oct 2017): 390–396.https://doi.org/10.1111/ibi.12537Jowita Niedojadlo, Agata Bury, Mariusz Cichoń, Edyta T. Sadowska, Ulf Bauchinger Lower haematocrit, haemoglobin and red blood cell number in zebra finches acclimated to cold compared to thermoneutral temperature, Journal of Avian Biology 49, no.33 (Apr 2018): jav-01596.https://doi.org/10.1111/jav.01596Laura L. Hurley, Callum S. McDiarmid, Christopher R. Friesen, Simon C. Griffith, Melissah Rowe Experimental heatwaves negatively impact sperm quality in the zebra finch, Proceedings of the Royal Society B: Biological Sciences 285, no.18711871 (Jan 2018): 20172547.https://doi.org/10.1098/rspb.2017.2547S. C. Andrew, L. L. Hurley, M. M. Mariette, S. C. Griffith Higher temperatures during development reduce body size in the zebra finch in the laboratory and in the wild, Journal of Evolutionary Biology 30, no.1212 (Oct 2017): 2156–2164.https://doi.org/10.1111/jeb.13181Blanca Jimeno, Michaela Hau, Simon Verhulst Strong association between corticosterone levels and temperature-dependent metabolic rate in individual zebra finches, Journal of Experimental Biology 220, no.2323 (Dec 2017): 4426–4431.https://doi.org/10.1242/jeb.166124Michael Briga, Simon Verhulst Individual variation in metabolic reaction norms over ambient temperature causes low correlation between basal and standard metabolic rate, Journal of Experimental Biology 220, no.1818 (Sep 2017): 3280–3289.https://doi.org/10.1242/jeb.160069D.B. Donato, D.M. Madden-Hallett, G.B. Smith, W. Gursansky Heap leach cyanide irrigation and risk to wildlife: Ramifications for the international cyanide management code, Ecotoxicology and Environmental Safety 140 (Jun 2017): 271–278.https://doi.org/10.1016/j.ecoenv.2017.02.033Imran Khaliq, Katrin Böhning-Gaese, Roland Prinzinger, Markus Pfenninger, Christian Hof The influence of thermal tolerances on geographical ranges of endotherms, Global Ecology and Biogeography 26, no.66 (Mar 2017): 650–668.https://doi.org/10.1111/geb.12575Kerianne M. Wilson, Michelle Kem, Nancy Tyler Burley Diet history effects on Zebra Finch incubation performance: Nest attendance, temperature regulation, and clutch success, The Auk 134, no.22 (Apr 2017): 295–307.https://doi.org/10.1642/AUK-16-161.1Joanna Rutkowska, Edyta T. Sadowska, Mariusz Cichoń, Ulf Bauchinger Increased fat catabolism sustains water balance during fasting in zebra finches, The Journal of Experimental Biology 219, no.1717 (Aug 2016): 2623–2628.https://doi.org/10.1242/jeb.138966Michaël Beaulieu , Frontiers in Ecology and Evolution 4 ( 2016).https://doi.org/10.3389/fevo.2016.00141Mylene M. Mariette, Katherine L. Buchanan, William A. Buttemer, Vincent Careau Tough decisions: Reproductive timing and output vary with individuals' physiology, behavior and past success in a social opportunistic breeder, Hormones and Behavior 76 (Nov 2015): 23–33.https://doi.org/10.1016/j.yhbeh.2015.03.011Nora H. Prior, Kiran K. Soma Neuroendocrine regulation of long-term pair maintenance in the monogamous zebra finch, Hormones and Behavior 76 (Nov 2015): 11–22.https://doi.org/10.1016/j.yhbeh.2015.04.014H. Wada, B. Kriengwatana, N. Allen, K. L. Schmidt, K. K. Soma, S. A. MacDougall-Shackleton Transient and permanent effects of suboptimal incubation temperatures on growth, metabolic rate, immune function and adrenocortical responses in zebra finches, Journal of Experimental Biology 218, no.1818 (Jul 2015): 2847–2855.https://doi.org/10.1242/jeb.114108S. Skold-Chiriac, A. Nord, M. Tobler, J.-A. Nilsson, D. Hasselquist Body temperature changes during simulated bacterial infection in a songbird: fever at night and hypothermia during the day, Journal of Experimental Biology 218, no.1818 (Jul 2015): 2961–2969.https://doi.org/10.1242/jeb.122150Antoine Stier, Sylvie Massemin, François Criscuolo Chronic mitochondrial uncoupling treatment prevents acute cold-induced oxidative stress in birds, Journal of Comparative Physiology B 184, no.88 (Sep 2014): 1021–1029.https://doi.org/10.1007/s00360-014-0856-6Antoine Stier, Pierre Bize, Damien Roussel, Quentin Schull, Sylvie Massemin, François Criscuolo Mitochondrial uncoupling as a regulator of life-history trajectories in birds: an experimental study in the zebra finch, Journal of Experimental Biology 217, no.1919 (Oct 2014): 3579–3589.https://doi.org/10.1242/jeb.103945Bernt Rønning, Børge Moe, Henrik H. Berntsen, Elin Noreen, Claus Bech, François Criscuolo Is the Rate of Metabolic Ageing and Survival Determined by Basal Metabolic Rate in the Zebra Finch?, PLoS ONE 9, no.99 (Sep 2014): e108675.https://doi.org/10.1371/journal.pone.0108675Sandra Sköld-Chiriac, Andreas Nord, Jan-Åke Nilsson, and Dennis Hasselquist Physiological and Behavioral Responses to an Acute-Phase Response in Zebra Finches: Immediate and Short-Term Effects, Physiological and Biochemical Zoology 87, no.22 (Jul 2015): 288–298.https://doi.org/10.1086/674789David Costantini, Pat Monaghan, Neil B. Metcalfe Prior hormetic priming is costly under environmental mismatch, Biology Letters 10, no.22 (Feb 2014): 20131010.https://doi.org/10.1098/rsbl.2013.1010David Costantini Early-Life Hormesis and Oxidative Experiences Fine-Tune the Adult Phenotype, (Mar 2014): 39–74.https://doi.org/10.1007/978-3-642-54663-1_2Su–Su Xia, An–Wei Yu, Li–Dan Zhao, Hui–Ying Zhang, Wei–Hong Zheng, Jin–Song Liu Metabolic thermogenesis and evaporative water loss in the Hwamei Garrulax canorus, Journal of Thermal Biology 38, no.88 (Dec 2013): 576–581.https://doi.org/10.1016/j.jtherbio.2013.10.003 Buddhamas Kriengwatana , Haruka Wada , Alexander Macmillan , and Scott A. MacDougall-Shackleton Juvenile Nutritional Stress Affects Growth Rate, Adult Organ Mass, and Innate Immune Function in Zebra Finches (Taeniopygia guttata), Physiological and Biochemical Zoology 86, no.66 (Jul 2015): 769–781.https://doi.org/10.1086/673260K J Mathot, K Martin, B Kempenaers, W Forstmeier Basal metabolic rate can evolve independently of morphological and behavioural traits, Heredity 111, no.33 (May 2013): 175–181.https://doi.org/10.1038/hdy.2013.35Rene Beamonte-Barrientos, Simon Verhulst Plasma reactive oxygen metabolites and non-enzymatic antioxidant capacity are not affected by an acute increase of metabolic rate in zebra finches, Journal of Comparative Physiology B 183, no.55 (Jan 2013): 675–683.https://doi.org/10.1007/s00360-013-0745-4David Costantini, Pat Monaghan, Neil B. Metcalfe Early life experience primes resistance to oxidative stress, Journal of Experimental Biology 215, no.1616 (Aug 2012): 2820–2826.https://doi.org/10.1242/jeb.072231Egbert Koetsier, Simon Verhulst A simple technique to manipulate foraging costs in seed-eating birds, Journal of Experimental Biology 214, no.88 (Apr 2011): 1225–1229.https://doi.org/10.1242/jeb.050336Andreas Nord, Maria I. Sandell, Jan-Åke Nilsson Female zebra finches compromise clutch temperature in energetically demanding incubation conditions, Functional Ecology 24, no.55 (Apr 2010): 1031–1036.https://doi.org/10.1111/j.1365-2435.2010.01719.xG. Burness, C. Armstrong, T. Fee, E. Tilman-Schindel Is there an energetic-based trade-off between thermoregulation and the acute phase response in zebra finches?, Journal of Experimental Biology 213, no.88 (Mar 2010): 1386–1394.https://doi.org/10.1242/jeb.027011U. Bauchinger, J. Keil, R. A. McKinney, J. M. Starck, S. R. McWilliams Exposure to cold but not exercise increases carbon turnover rates in specific tissues of a passerine, Journal of Experimental Biology 213, no.33 (Jan 2010): 526–534.https://doi.org/10.1242/jeb.037408Kimberley J. Mathot, Sophie Godde, Vincent Careau, Donald W. Thomas, Luc-Alain Giraldeau Testing dynamic variance-sensitive foraging using individual differences in basal metabolic rates of zebra finches, Oikos 118, no.44 (Apr 2009): 545–552.https://doi.org/10.1111/j.1600-0706.2009.17357.xBørge Moe, Bernt Rønning, Simon Verhulst, Claus Bech Metabolic ageing in individual zebra finches, Biology Letters 5, no.11 (Oct 2008): 86–89.https://doi.org/10.1098/rsbl.2008.0481N. E. Seavy Physiological correlates of habitat association in East African sunbirds (Nectariniidae), Journal of Zoology 270, no.22 (Jun 2006): 290–297.https://doi.org/10.1111/j.1469-7998.2006.00138.xBernt Rønning, Børge Moe, Claus Bech Long-term repeatability makes basal metabolic rate a likely heritable trait in the zebra finch Taeniopygia guttata, Journal of Experimental Biology 208, no.2424 (Dec 2005): 4663–4669.https://doi.org/10.1242/jeb.01941Popko Wiersma, Simon Verhulst Effects of intake rate on energy expenditure, somatic repair and reproduction of zebra finches, Journal of Experimental Biology 208, no.2121 (Nov 2005): 4091–4098.https://doi.org/10.1242/jeb.01854Cherilyn T. Burton, Wesley W. Weathers Energetics and thermoregulation of the Gouldian Finch ( Erythrura gouldiae ), Emu - Austral Ornithology 103, no.11 (Dec 2016): 1–10.https://doi.org/10.1071/MU02030Frank Johnson, Michael E Rashotte Food availability but not cold ambient temperature affects undirected singing in adult male zebra finches, Physiology & Behavior 76, no.11 (May 2002): 9–20.https://doi.org/10.1016/S0031-9384(02)00685-6Lee B. Astheimer, William A. Buttemer Changes in latitude, changes in attitude: a perspective on ecophysiological studies of Australian birds, Emu - Austral Ornithology 102, no.11 (Dec 2016): 19–27.https://doi.org/10.1071/MU01031Michael E Rashotte, Elena V Sedunova, Frank Johnson, Iu.F Pastukhov Influence of food and water availability on undirected singing and energetic status in adult male zebra finches (Taeniopygia guttata), Physiology & Behavior 74, no.4-54-5 (Nov 2001): 533–541.https://doi.org/10.1016/S0031-9384(01)00600-XR. L. Nudds, D. M. Bryant Exercise training lowers the resting metabolic rate of Zebra Finches, Taeniopygia guttata, Functional Ecology 15, no.44 (Dec 2001): 458–464.https://doi.org/10.1046/j.0269-8463.2001.00546.x L. Richard Allen and Ian D. Hume The Maintenance Nitrogen Requirement of the Zebra Finch Taeniopygia guttata L. R. Allen and I. D. Hume, Physiological and Biochemical Zoology 74, no.33 (Jul 2015): 366–375.https://doi.org/10.1086/320431Thomas W. Donald, Jacques Blondel, Philippe Perret Physiological ecology of Mediterranean Blue Tits (Parus caeruleus) I. A test for inter-population differences in resting metabolic rate and thermal conductance as a response to hot climates, Zoology 104, no.11 (Jan 2001): 33–40.https://doi.org/10.1078/0944-2006-00004 B. Irene Tieleman and Joseph B. Williams The Adjustment of Avian Metabolic Rates and Water Fluxes to Desert Environments B. I. Tieleman and J. B. Williams, Physiological and Biochemical Zoology 73, no.44 (Jul 2015): 461–479.https://doi.org/10.1086/317740Tracy A Maddocks, Fritz Geiser The thermoregulatory limits of an Australian Passerine, the Silvereye (Zosterops lateralis), Journal of Thermal Biology 24, no.11 (Feb 1999): 43–50.https://doi.org/10.1016/S0306-4565(98)00036-9Wesley W. Weathers Energetics and Thermoregulation by Small Passerines of the Humid, Lowland Tropics, The Auk 114, no.33 (Jul 1997): 341–353.https://doi.org/10.2307/4089237Joseph B. Williams Energetics of Avian Incubation, (Jan 1996): 375–415.https://doi.org/10.1007/978-1-4613-0425-8_11William R. Dawson, Timothy P. O’Connor Energetic Features of Avian Thermoregulatory Responses, (Jan 1996): 85–124.https://doi.org/10.1007/978-1-4613-0425-8_4D. C. Houston, D. Donnan, P. J. Jones The source of the nutrients required for egg production in zebra finches Poephila guttata, Journal of Zoology 235, no.33 (Mar 2009): 469–483.https://doi.org/10.1111/j.1469-7998.1995.tb01763.xRichard Zann, Maurizio Rossetto Zebra Finch Incubation: Brood patch, Egg Temperature and Thermal Properties of the Nest, Emu - Austral Ornithology 91, no.22 (Dec 2016): 107–120.https://doi.org/10.1071/MU9910107R Prinzinger, A Preßmar, E Schleucher Body temperature in birds, Comparative Biochemistry and Physiology Part A: Physiology 99, no.44 (Jan 1991): 499–506.https://doi.org/10.1016/0300-9629(91)90122-SS.M. Evans, Rachel Neems, Charlotte Pagendam Drinking Skills in Estrildid Finches, Emu - Austral Ornithology 89, no.33 (Dec 2016): 177–181.https://doi.org/10.1071/MU9890177 Vaughan H. Shoemaker , Mary Ann Baker , and John P. Loveridge Effect of Water Balance on Thermoregulation in Waterproof Frogs (Chiromantis and Phyllomedusa), Physiological Zoology 62, no.11 (Sep 2015): 133–146.https://doi.org/10.1086/physzool.62.1.30160002David T Booth Metabolism in malleefowl (Leipoa ocellata), Comparative Biochemistry and Physiology Part A: Physiology 92, no.22 (Jan 1989): 207–209.https://doi.org/10.1016/0300-9629(89)90154-0 Zeev Arad , Idit Gavrieli-Levin , Uri Eylath , and Jacob Marder Effect of Dehydration on Cutaneous Water Evaporation in Heat-Exposed Pigeons (Columba livia), Physiological Zoology 60, no.66 (Sep 2015): 623–630.https://doi.org/10.1086/physzool.60.6.30159978Carol M. Vleck, J. Priedkalns Reproduction in Zebra Finches: Hormone Levels and Effect of Dehydration, The Condor 87, no.11 (Feb 1985): 37–46.https://doi.org/10.2307/1367129William R. Dawson Physiological studies of desert birds: present and future considerations, Journal of Arid Environments 7, no.22 (Jun 1984): 133–155.https://doi.org/10.1016/S0140-1963(18)31380-6Nancy Jean Mann Comparative physiology of the Scrub Jay (Aphelocoma coerulescens) and the Steller's Jay (Cyanocitta Stelleri), Comparative Biochemistry and Physiology Part A: Physiology 76, no.22 (Jan 1983): 305–318.https://doi.org/10.1016/0300-9629(83)90332-8Glenn E. Walsberg AVIAN ECOLOGICAL ENERGETICS, (Jan 1983): 161–220.https://doi.org/10.1016/B978-0-12-249407-9.50012-0BRIAN K. MCNAB Energetics, body size, and the limits to endothermy, Journal of Zoology 199, no.11 (Aug 2009): 1–29.https://doi.org/10.1111/j.1469-7998.1983.tb06114.xRolf Ehlers, Martin L Morton Metabolic rate and evaporative water loss in the least seed-snipe, Thinocorus rumicivorus, Comparative Biochemistry and Physiology Part A: Physiology 73, no.22 (Jan 1982): 233–235.https://doi.org/10.1016/0300-9629(82)90061-5Z Arad Effect of water deprivation and heat exposure on body weight loss and drinking capacity in four breeds of fowl (Gallus domesticus), Comparative Biochemistry and Physiology Part A: Physiology 73, no.22 (Jan 1982): 297–299.https://doi.org/10.1016/0300-9629(82)90073-1William R Dawson Evaporative losses of water by birds, Comparative Biochemistry and Physiology Part A: Physiology 71, no.44 (Jan 1982): 495–509.https://doi.org/10.1016/0300-9629(82)90198-0 Wesley W. Weathers Physiological Thermoregulation in Heat-Stressed Birds: Consequences of Body Size, Physiological Zoology 54, no.33 (Sep 2015): 345–361.https://doi.org/10.1086/physzool.54.3.30159949 Brian G. Collins Nectar Intake and Water Balance for Two Species of Australian Honeyeater, Lichmera indistincta and Acanthorhynchus superciliosis, Physiological Zoology 54, no.11 (Sep 2015): 1–13.https://doi.org/10.1086/physzool.54.1.30155799William R. Dawson Adjustments of Australian birds to thermal conditions and water scarcity in arid zones, (Jan 1981): 1649–1674.https://doi.org/10.1007/978-94-009-8629-9_58Claus Bech, Uffe Midtg�rd Brain temperature and therete mirabile ophthalmicum in the Zebra finch (Poephila guttata), Journal of Comparative Physiology ? B 145, no.11 (Jan 1981): 89–93.https://doi.org/10.1007/BF00782598 William R. Dawson , Cynthia Carey , Curtis S. Adkisson , and Robert D. Ohmart Responses of Brewer's and Chipping Sparrows to Water Restriction, Physiological Zoology 52, no.44 (Sep 2015): 529–541.https://doi.org/10.1086/physzool.52.4.30155943Richard M. Edwards, Howard Haines Effects of ambient water vapor pressure and temperature on evaporative water loss inPeromyscus maniculatus andMus musculus, Journal of Comparative Physiology ? B 128, no.22 (Jan 1978): 177–184.https://doi.org/10.1007/BF00689482G. C. Whittow Regulation of Body Temperature, (Jan 1976): 146–173.https://doi.org/10.1007/978-3-642-96274-5_7D.H. Thomas, J.G. Phillips Studies in avian adrenal steroid function, General and Comparative Endocrinology 26, no.33 (Jul 1975): 404–411.https://doi.org/10.1016/0016-6480(75)90094-5Rudolf Drent INCUBATION, (Jan 1975): 333–420.https://doi.org/10.1016/B978-0-12-249405-5.50014-8Oscar W. Johnson Relative thickness of the renal medulla in birds, Journal of Morphology 142, no.33 (Mar 1974): 277–284.https://doi.org/10.1002/jmor.1051420304Oscar W. Johnson, Robert D. Ohmart The renal medulla and water economy in vesper sparrows (Pooecetes gramineus), Comparative Biochemistry and Physiology Part A: Physiology 44, no.22 (Feb 1973): 655–661.https://doi.org/10.1016/0300-9629(73)90517-3Charles D. Fisher, Eric Lindgren, William R. Dawson Drinking Patterns and Behavior of Australian Desert Birds in Relation to Their Ecology and Abundance, The Condor 74, no.22 (Jul 1972): 111–136.https://doi.org/10.2307/1366276R.H. Drent, B. Stonehouse Thermoregulatory responses of the peruvian penguin, Spheniscus humboldti, Comparative Biochemistry and Physiology Part A: Physiology 40, no.33 (Nov 1971): 689–710.https://doi.org/10.1016/0300-9629(71)90254-4Charles G. Yarbrough The influence of distribution and ecology on the thermoregulation of small birds, Comparative Biochemistry and Physiology Part A: Physiology 39, no.22 (Jun 1971): 235–266.https://doi.org/10.1016/0300-9629(71)90082-XCynthia Carey, Martin L. Morton A comparison of salt and water regulation in California quail (Lophortyx californicus) and Gambel's quail (Lophortyx gambelii), Comparative Biochemistry and Physiology Part A: Physiology 39, no.11 (May 1971): 75–101.https://doi.org/10.1016/0300-9629(71)90349-5Ralph R. Moldenhauer The effects of temperature on the metabolic rate and evaporative water loss of the sage sparrow Amphispiza belli nevadensis, Comparative Biochemistry and Physiology 36, no.33 (Oct 1970): 579–587.https://doi.org/10.1016/0010-406X(70)91033-9R. D. Ohmart, T. E. Chapman Water Turnover in Roadrunners under Different Environmental Conditions, The Auk 87, no.44 (Oct 1970): 787–793.https://doi.org/10.2307/4083712Ralph R. Moldenhauer, John A. Wiens The Water Economy of the Sage Sparrow, Amphispiza belli nevadensis, The Condor 72, no.33 (Jul 1970): 265–275.https://doi.org/10.2307/1366003Oscar W. Johnson, John N. Mugaas Quantitative and Organizational Features of the Avian Renal Medulla, The Condor 72, no.33 (Jul 1970): 288–292.https://doi.org/10.2307/1366005John N. Mugaas, James R. Templeton Thermoregulation in the Red-Breasted Nuthatch (Sitta canadensis), The Condor 72, no.22 (Apr 1970): 125–132.https://doi.org/10.2307/1366621Robert D. Ohmart, E. Linwood Smith Use of Sodium Chloride Solutions by the Brewer's Sparrow and Tree Sparrow, The Auk 87, no.22 (Apr 1970): 329–341.https://doi.org/10.2307/4083924Ernest J. Willoughby Evaporative water loss of a small xerophilous finch, Lonchura malabarica, Comparative Biochemistry and Physiology 28, no.22 (Feb 1969): 655–664.https://doi.org/10.1016/0010-406X(69)92096-9S. Charles Kendeigh Tolerance of Cold and Bergmann's Rule, The Auk 86, no.11 (Jan 1969): 13–25.https://doi.org/10.2307/4083537Ernest J. Willoughby Water economy of the stark's lark and grey-backed finch-lark from the Namib Desert of South West Africa, Comparative Biochemistry and Physiology 27, no.33 (Dec 1968): 723–745.https://doi.org/10.1016/0010-406X(68)90614-2Eugene C. Crawford,, Robert C. Lasiewski Oxygen Consumption and Respiratory Evaporation of the Emu and Rhea, The Condor 70, no.44 (Oct 1968): 333–339.https://doi.org/10.2307/1365927Richard E Johnson Temperature regulation in the white-tailed ptarmigan, Lagopus leucurus, Comparative Biochemistry and Physiology 24, no.33 (Mar 1968): 1003–1014.https://doi.org/10.1016/0010-406X(68)90813-XWilliam R. Dawson, George A. Bartholomew TEMPERATURE REGULATION AND WATER ECONOMY OF DESERT BIRDS, (Jan 1968): 357–394.https://doi.org/10.1016/B978-1-4831-9868-2.50015-3Robert C. Lasiewski, Wesley W. Weathers, Marvin H. Bernstein Physiological responses of the giant hummingbird, Patagona gigas, Comparative Biochemistry and Physiology 23, no.33 (Dec 1967): 797–813.https://doi.org/10.1016/0010-406X(67)90342-8Lewis Greenwald, Ward B. Stone, Tom J. Cade Physiological adjustments of the budgerygah (Melopsittacus undulatus) to dehydrating conditions, Comparative Biochemistry and Physiology 22, no.11 (Jul 1967): 91–100.https://doi.org/10.1016/0010-406X(67)90170-3Clyde F. Herreid, Brina Kessel Thermal conductance in birds and mammals, Comparative Biochemistry and Physiology 21, no.22 (May 1967): 405–414.https://doi.org/10.1016/0010-406X(67)90802-XRobert C. Lasiewski, William R. Dawson A Re-Examination of the Relation between Standard Metabolic Rate and Body Weight in Birds, The Condor 69, no.11 (Jan 1967): 13–23.https://doi.org/10.2307/1366368Robert C. Lasiewski Physiological Responses of the Blue-Throated and Rivoli's Hummingbirds, The Auk 84, no.11 (Jan 1967): 34–48.https://doi.org/10.2307/4083253Robert C Lasiewski, Alfredo L Acosta, Marvin H Bernstein Evaporative water loss in birds—I. Characteristics of the open flow method of determination, and their relation to estimates of thermoregulatory ability, Comparative Biochemistry and Physiology 19, no.22 (Oct 1966): 445–457.https://doi.org/10.1016/0010-406X(66)90153-8Robert C Lasiewski, Alfredo L Acosta, Marvin H Bernstein Evaporative water loss in birds—II. A modified method for determination by direct weighing, Comparative Biochemistry and Physiology 19, no.22 (Oct 1966): 459–470.https://doi.org/10.1016/0010-406X(66)90154-XMichael Smyth, George A. Bartholomew The Water Economy of the Black-Throated Sparrow and the Rock Wren, The Condor 68, no.55 (Sep 1966): 447–458.https://doi.org/10.2307/1365317Brian K. McNab An Analysis of the Body Temperatures of Birds, The Condor 68, no.11 (Jan 1966): 47–55.https://doi.org/10.2307/1365174

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call