Abstract

Previous articleNext article No AccessBody Size and Metabolic Rate in SalamandersWalter G. Whitford and Victor H. HutchisonWalter G. Whitford Search for more articles by this author and Victor H. Hutchison Search for more articles by this author PDFPDF PLUS Add to favoritesDownload CitationTrack CitationsPermissionsReprints Share onFacebookTwitterLinkedInRedditEmail SectionsMoreDetailsFiguresReferencesCited by Volume 40, Number 2Apr., 1967 Article DOIhttps://doi.org/10.1086/physzool.40.2.30152447 Views: 151Total views on this site Citations: 89Citations are reported from Crossref Journal History This article was published in Physiological Zoology (1928-1998), which is continued by Physiological and Biochemical Zoology (1999-present). Copyright 1967 University of ChicagoPDF download Crossref reports the following articles citing this article:Jillian C. Newman, Eric A. Riddell, Lori A. Williams, Michael W. Sears, Kyle Barrett Integrating physiology into correlative models can alter projections of habitat suitability under climate change for a threatened amphibian, Ecography 2022, no.88 (Jun 2022).https://doi.org/10.1111/ecog.06082Patrick D. Moldowan, Glenn J. Tattersall, Njal Rollinson Climate‐associated decline of body condition in a fossorial salamander, Global Change Biology 28, no.55 (Sep 2021): 1725–1739.https://doi.org/10.1111/gcb.15766Benjamin B. Johnson, Jeremy B. Searle, Jed P. Sparks Novel Allometric Estimators Improve Estimation Accuracy of Body Surface Area, Volume, and Surface Area-to-Volume Ratio in Lungless Salamanders (Urodela: Plethodontidae), Herpetologica 77, no.33 (Sep 2021).https://doi.org/10.1655/Herpetologica-D-21-00013.1Benjamin B. Johnson, Jeremy B. Searle, Jed P. Sparks Genome size influences adaptive plasticity of water loss, but not metabolic rates in lungless salamanders, The Journal of Experimental Biology (Mar 2021): jeb.242196.https://doi.org/10.1242/jeb.242196Arianne F. Messerman, Manuel Leal Inter- and intraspecific variation in juvenile metabolism and water loss among five biphasic amphibian species, Oecologia 194, no.33 (Oct 2020): 371–382.https://doi.org/10.1007/s00442-020-04780-zEnrico Lunghi, Raoul Manenti, Fabio Cianferoni, Filippo Ceccolini, Michael Veith, Claudia Corti, Gentile Francesco Ficetola, Giorgio Mancinelli, Interspecific and interpopulation variation in individual diet specialization: Do environmental factors have a role?, Ecology 101, no.88 (Jun 2020).https://doi.org/10.1002/ecy.3088Erica K. Baken, Lauren E. Mellenthin, Dean C. Adams Macroevolution of desiccation‐related morphology in plethodontid salamanders as inferred from a novel surface area to volume ratio estimation approach, Evolution 74, no.22 (Jan 2020): 476–486.https://doi.org/10.1111/evo.13898Kira D. McEntire, John C. Maerz Integrating Ecophysiological and Agent-Based Models to Simulate How Behavior Moderates Salamander Sensitivity to Climate, Frontiers in Ecology and Evolution 7 (Feb 2019).https://doi.org/10.3389/fevo.2019.00022Nicholas S. Gladstone, Evin T. Carter, K. Denise Kendall Niemiller, Lindsey E. Hayter, Matthew L. Niemiller A new maximum body size record for the Berry Cave Salamander (Gyrinophilus gulolineatus) and genus Gyrinophilus (Caudata, Plethodontidae) with a comment on body size in plethodontid salamanders, Subterranean Biology 28 (Nov 2018): 29–38.https://doi.org/10.3897/subtbiol.28.30506Julie Charbonnier, Jacquelyn Pearlmutter, James Vonesh, Caitlin Gabor, Zachery Forsburg, Kristine Grayson Cross-Life Stage Effects of Aquatic Larval Density and Terrestrial Moisture on Growth and Corticosterone in the Spotted Salamander, Diversity 10, no.33 (Jul 2018): 68.https://doi.org/10.3390/d10030068Kenzie E. Pereira, Brian I. Crother, David M. Sever, Clifford L. Fontenot, John A. Pojman, Damien B. Wilburn, Sarah K. Woodley Skin glands of an aquatic salamander vary in size and distribution and release antimicrobial secretions effective against chytrid fungal pathogens, The Journal of Experimental Biology 221, no.1414 (Jun 2018): jeb183707.https://doi.org/10.1242/jeb.183707Eric A. Riddell, Jonathan P. Odom, Jason D. Damm, Michael W. Sears Plasticity reveals hidden resistance to extinction under climate change in the global hotspot of salamander diversity, Science Advances 4, no.77 (Jul 2018).https://doi.org/10.1126/sciadv.aar5471Douglas Glazier Rediscovering and Reviving Old Observations and Explanations of Metabolic Scaling in Living Systems, Systems 6, no.11 (Jan 2018): 4.https://doi.org/10.3390/systems6010004William E. Peterman, Meaghan Gade The importance of assessing parameter sensitivity when using biophysical models: a case study using plethodontid salamanders, Population Ecology 59, no.33 (Aug 2017): 275–286.https://doi.org/10.1007/s10144-017-0591-4Eric A. Riddell, Evan K. Apanovitch, Jonathan P. Odom, Michael W. Sears Physical calculations of resistance to water loss improve predictions of species range models, Ecological Monographs 87, no.11 (Jan 2017): 21–33.https://doi.org/10.1002/ecm.1240Matthew E. Gifford Physiology of Plethodontid Salamanders: A Call for Increased Efforts, Copeia 104, no.11 (Mar 2016): 42–51.https://doi.org/10.1643/OT-14-223Patrick J Ruhl, Robert N Chapman, John B. Dunning Field-Testing a Standard Metabolic Rate Estimation Technique for Eastern Red-Backed Salamanders, Journal of Herpetology 50, no.11 (Mar 2016): 138–144.https://doi.org/10.1670/14-159Jessica S. Veysey Powell, Kimberly J. Babbitt, Christine Cooper Despite Buffers, Experimental Forest Clearcuts Impact Amphibian Body Size and Biomass, PLOS ONE 10, no.1111 (Nov 2015): e0143505.https://doi.org/10.1371/journal.pone.0143505Geoffrey R. Smith, Wesley O. Smith, Todd Johnson Effects of colour morph and season on the dehydration and rehydration rates of Plethodon cinereus, Amphibia-Reptilia 36, no.22 (Jun 2015): 170–174.https://doi.org/10.1163/15685381-00002986Eric A. Riddell, Michael W. Sears Geographic variation of resistance to water loss within two species of lungless salamanders: implications for activity, Ecosphere 6, no.55 (May 2015): art86.https://doi.org/10.1890/ES14-00360.1W. E. Peterman, R. D. Semlitsch Spatial variation in water loss predicts terrestrial salamander distribution and population dynamics, Oecologia 176, no.22 (Aug 2014): 357–369.https://doi.org/10.1007/s00442-014-3041-4William E. Peterman, Grant M. Connette, Raymond D. Semlitsch, Lori S. Eggert Ecological resistance surfaces predict fine-scale genetic differentiation in a terrestrial woodland salamander, Molecular Ecology 23, no.1010 (May 2014): 2402–2413.https://doi.org/10.1111/mec.12747A.C. Telfer, F. Laberge Responses of Eastern red-backed salamanders (Plethodon cinereus) to chemical cues of prey presented in soluble and volatile forms, Physiology & Behavior 114-115 (Apr 2013): 6–13.https://doi.org/10.1016/j.physbeh.2013.03.001Robin G. Munshaw, Wendy J. Palen, Danielle M. Courcelles, Jacques C. Finlay, Wayne M. Getz Predator-Driven Nutrient Recycling in California Stream Ecosystems, PLoS ONE 8, no.33 (Mar 2013): e58542.https://doi.org/10.1371/journal.pone.0058542W.E. Peterman, J.L. Locke, R.D. Semlitsch Spatial and temporal patterns of water loss in heterogeneous landscapes: using plaster models as amphibian analogues, Canadian Journal of Zoology 91, no.33 (Mar 2013): 135–140.https://doi.org/10.1139/cjz-2012-0229Steve Fryday, Helen Thompson Toxicity of pesticides to aquatic and terrestrial life stages of amphibians and occurrence, habitat use and exposure of amphibian species in agricultural environments, EFSA Supporting Publications 9, no.99 (Sep 2012).https://doi.org/10.2903/sp.efsa.2012.EN-343Zachary C. DeVries, Raymond P. Henry Effects of hypoxia on oxygen uptake and surfacing behavior in the giant aquatic salamander Siren lacertina, Marine and Freshwater Behaviour and Physiology 45, no.22 (Mar 2012): 135–143.https://doi.org/10.1080/10236244.2012.691244Matthew E. Gifford, Kenneth H. Kozak Islands in the sky or squeezed at the top? Ecological causes of elevational range limits in montane salamanders, Ecography 35, no.33 (May 2012): 193–203.https://doi.org/10.1111/j.1600-0587.2011.06866.xRobert J. Warren, Mark A. Bradford Seasonal Climate Trends, the North Atlantic Oscillation, and Salamander Abundance in the Southern Appalachian Mountain Region, Journal of Applied Meteorology and Climatology 49, no.88 (Aug 2010): 1597–1603.https://doi.org/10.1175/2010JAMC2511.1Jessica A. Homyack, Carola A. Haas, William A. Hopkins Influence of temperature and body mass on standard metabolic rate of eastern red-backed salamanders (Plethodon cinereus), Journal of Thermal Biology 35, no.33 (Apr 2010): 143–146.https://doi.org/10.1016/j.jtherbio.2010.01.006Marvalee H. Wake, Maureen A. Donnelly A new lungless caecilian (Amphibia: Gymnophiona) from Guyana, Proceedings of the Royal Society B: Biological Sciences 277, no.16831683 (Nov 2009): 915–922.https://doi.org/10.1098/rspb.2009.1662An Tran-Duy, Johan W. Schrama, Anne A. van Dam, Johan A.J. Verreth Effects of oxygen concentration and body weight on maximum feed intake, growth and hematological parameters of Nile tilapia, Oreochromis niloticus, Aquaculture 275, no.1-41-4 (Mar 2008): 152–162.https://doi.org/10.1016/j.aquaculture.2007.12.024Douglas S. Glazier Beyond the : variation in the intra- and interspecific scaling of metabolic rate in animals, Biological Reviews 80, no.0404 (Aug 2005): 611.https://doi.org/10.1017/S1464793105006834Charles T. Hanifin, Edmund D. Brodie, Edmund D. Brodie A predictive model to estimate total skin tetrodotoxin in the newt Taricha granulosa, Toxicon 43, no.33 (Mar 2004): 243–249.https://doi.org/10.1016/j.toxicon.2003.11.025Richard M. Austin Cutaneous Microbial Flora and Antibiosis in Plethodon Ventralis, (Jan 2000): 451–462.https://doi.org/10.1007/978-1-4615-4255-1_25Shin Oikawa, Masashi Hirata, Jun Kita, Yasuo Itazawa Ontogeny of respiratory area of a marine teleost, porgy,pagrus major, Ichthyological Research 46, no.33 (Sep 1999): 233–244.https://doi.org/10.1007/BF02678509Louis N. Irwin, Karen A. Talentino, Denise A. Caruso Effect of fasting and thermal acclimation on metabolism of juvenile axolotls(Ambystoma mexicanum), (Jan 1999): 1–12.https://doi.org/10.1007/978-3-642-60083-8_1Leonard B. Kirschner Extrarenal Mechanisms in Hydromineral and Acid‐Base Regulation in Aquatic Vertebrates, (Jan 2011): 577–622.https://doi.org/10.1002/cphy.cp130109C. BARKER JØRGENSEN 200 YEARS OF AMPHIBIAN WATER ECONOMY: FROM ROBERT TOWNSON TO THE PRESENT, Biological Reviews 72, no.22 (Jan 2007): 153–237.https://doi.org/10.1111/j.1469-185X.1997.tb00013.xG. Frangioni, R. Brizzi, G. Borgioli Haematological changes by splenic respiratory compensation in the cave salamander, Hydromantes genei, Journal of Zoology 241, no.11 (May 2009): 175–183.https://doi.org/10.1111/j.1469-7998.1997.tb05507.xM. E. Feder The Regulation of Cutaneous Gas Exchange, (Jan 1995): 3–23.https://doi.org/10.1007/978-3-642-79666-1_1Carole L. Hom Modelling reproductive allocation of dusky salamanders using optimal control theory: Pros, cons and caveats, Evolutionary Ecology 6, no.66 (Nov 1992): 458–481.https://doi.org/10.1007/BF02270692Shin Oikawa, Yasuo Itazawa Relationship between metabolic rate in vitro and body mass in a marine teleost, porgy Pagrus major, Fish Physiology and Biochemistry 10, no.33 (Oct 1992): 177–182.https://doi.org/10.1007/BF00004511Lawrence E. Licht, Leslie A. Lowcock Genome size and metabolic rate in salamanders, Comparative Biochemistry and Physiology Part B: Comparative Biochemistry 100, no.11 (Jan 1991): 83–92.https://doi.org/10.1016/0305-0491(91)90089-VLawrence E Licht, James P Bogart Comparative rates of oxygen consumption and water loss in diploid and polyploid salamanders (genus ambystoma), Comparative Biochemistry and Physiology Part A: Physiology 97, no.44 (Jan 1990): 569–572.https://doi.org/10.1016/0300-9629(90)90129-GC. K. Smith, J. W. Petranka Prey size-distributions and size-specific foraging success of Ambystoma larvae, Oecologia 71, no.22 (Jan 1987): 239–244.https://doi.org/10.1007/BF00377290DIANNE B. SEALE Amphibia, (Jan 1987): 467–552.https://doi.org/10.1016/B978-0-12-544792-8.50012-7Alan W. Pinder Cutaneous diffusing capacity increases during hypoxia in cold submerged bullfrogs (Rana catesbeiana), Respiration Physiology 70, no.11 (Jan 1987): 85–95.https://doi.org/10.1016/S0034-5687(87)80034-8Gary M. Malvin, Michael P. Hlastala Regulation of cutaneous gas exchange by environmental O2 and CO2 in the frog, Respiration Physiology 65, no.11 (Jul 1986): 99–111.https://doi.org/10.1016/0034-5687(86)90009-5Y. Itazawa, S. Oikawa A quantitative interpretation of the metabolism-size relationship in animals, Experientia 42, no.22 (Feb 1986): 152–153.https://doi.org/10.1007/BF01952441Elizabeth Sherman, Sallie G. Stadlen The effect of dehydration on rehydration and metabolic rate in a lunged and a lungless Salamander, Comparative Biochemistry and Physiology Part A: Physiology 85, no.33 (Jan 1986): 483–487.https://doi.org/10.1016/0300-9629(86)90434-2MARTIN E. FEDER, WARREN W. BURGGREN CUTANEOUS GAS EXCHANGE IN VERTEBRATES: DESIGN, PATTERNS, CONTROL AND IMPLICATIONS, Biological Reviews 60, no.11 (Feb 1985): 1–45.https://doi.org/10.1111/j.1469-185X.1985.tb00416.xMartin E. Feder Effect of hypoxia and body size on the energy metabolism of lungless tadpoles,Bufo woodhousei, and air-breathing anuran larvae, Journal of Experimental Zoology 228, no.11 (Oct 1983): 11–19.https://doi.org/10.1002/jez.1402280103Augusto S Abe, Erasmo G Mendes Effect of body size and temperature on oxygen uptake in the water snakes Helicops modestus and Liophis miliaris (colubridae), Comparative Biochemistry and Physiology Part A: Physiology 65, no.33 (Jan 1980): 367–370.https://doi.org/10.1016/0300-9629(80)90045-6A. P. Mishra, B. R. Singh Oxygen uptake through water during early life of Anabas testudineus (Bloch), Hydrobiologia 66, no.22 (Oct 1979): 129–133.https://doi.org/10.1007/BF00032041Martin E. Feder Effect of temperature on post-activity oxygen consumption in lunged and lungless salamanders, Journal of Experimental Zoology 206, no.22 (Nov 1978): 179–190.https://doi.org/10.1002/jez.1402060207Antonio Ari Gonçalves, Paulo Sawaya Oxygen uptake by Typhlonectes compressicaudus related to the body weight, Comparative Biochemistry and Physiology Part A: Physiology 61, no.11 (Jan 1978): 141–143.https://doi.org/10.1016/0300-9629(78)90290-6F.B Eddy, P McDonald Aquatic respiration of the crested newt Triturus cristatus, Comparative Biochemistry and Physiology Part A: Physiology 59, no.11 (Jan 1978): 85–88.https://doi.org/10.1016/0300-9629(78)90311-0Martin E. Feder Oxygen consumption and activity in salamanders: Effect of body size and lunglessness, Journal of Experimental Zoology 202, no.33 (Dec 1977): 403–413.https://doi.org/10.1002/jez.1402020310Ruthanne Batcheller Pitkin Effects of temperature on respiration of Notophthalmus viridescens, the red-spotted newt, Comparative Biochemistry and Physiology Part A: Physiology 57, no.44 (Jan 1977): 413–416.https://doi.org/10.1016/0300-9629(77)90138-4Victor H. Hutchison, Howard B. Haines, Gustav Engbretson Aquatic life at high altitude: Respiratory adaptations in the lake titicaca frog, Telmatobius culeus, Respiration Physiology 27, no.11 (Jul 1976): 115–129.https://doi.org/10.1016/0034-5687(76)90022-0Gordon R. Ultsch Respiratory surface area as a factor controlling the standard rate of O2 consumption of aquatic salamanders, Respiration Physiology 26, no.33 (May 1976): 357–369.https://doi.org/10.1016/0034-5687(76)90006-2Stan L. Lindstedt, William A. Calder Body Size and Longevity in Birds, The Condor 78, no.11 (Apr 1976): 91–94.https://doi.org/10.2307/1366920Martin E. Feder Oxygen consumption and body temperature in neotropical and temperate zone lungless salamanders (Amphibia: Plethodontidae), Journal of Comparative Physiology ? B 110, no.22 (Jan 1976): 197–208.https://doi.org/10.1007/BF00689308Alan G. Heath Respiratory responses to hypoxia by Ambystoma tigrinum larvae, paedomorphs, and metamorphosed adults, Comparative Biochemistry and Physiology Part A: Physiology 55, no.11 (Jan 1976): 45–49.https://doi.org/10.1016/0300-9629(76)90121-3Randall N. Gatz, Eugene C. Crawford, Johannes Piiper Kinetics of inert gas equilibration in an exclusively skin-breathing salamander, Desmognathus fuscus, Respiration Physiology 24, no.11 (Jun 1975): 15–29.https://doi.org/10.1016/0034-5687(75)90118-8Lloyd C. Fitzpatrick, Arthur V. Brown Metabolic compensation to temperature in the salamander Desmognathus ochrophaeus from a high elevation population, Comparative Biochemistry and Physiology Part A: Physiology 50, no.44 (Apr 1975): 733–737.https://doi.org/10.1016/0300-9629(75)90137-1Victor H. Hutchison, L. Douglas Turney Glucose and lactate concentrations during activity in the leopard frog,Rana pipiens, Journal of Comparative Physiology ? B 99, no.44 (Jan 1975): 287–295.https://doi.org/10.1007/BF00710369L.Douglas Turkey, Victor H. Hutchison Metabolic scope, oxygen debt and the diurnal oxygen consumption cycle of the leopard frog, Rana pipiens, Comparative Biochemistry and Physiology Part A: Physiology 49, no.33 (Nov 1974): 583–601.https://doi.org/10.1016/0300-9629(74)90571-4Stanley S. Hillman The effect of arginine vasopressin on water and sodium balance in the urodele amphibian aneides lugubris, General and Comparative Endocrinology 24, no.11 (Sep 1974): 74–82.https://doi.org/10.1016/0016-6480(74)90143-9Albert F. Bennett, Paul Licht Anaerobic metabolism during activity in amphibians, Comparative Biochemistry and Physiology Part A: Physiology 48, no.22 (Jun 1974): 319–327.https://doi.org/10.1016/0300-9629(74)90712-9R.W. Guimond, V.H. Hutchison Aerial and aquatic respiration in the congo eel Amphiuma means means (GARDEN), Respiration Physiology 20, no.22 (Mar 1974): 147–159.https://doi.org/10.1016/0034-5687(74)90103-0Randall N. Gatz, Eugene C. Crawford, Johannes Piiper Metabolic and heart rate response of the plethodontid salamander Desmognathus fuscus to hypoxia, Respiration Physiology 20, no.11 (Feb 1974): 43–49.https://doi.org/10.1016/0034-5687(74)90017-6Gordon R Ultsch Gas exchange and metabolism in the sirenidae (Amphibia: Caudata)—I. Oxygen consumption of submerged sirenids as a function of body size and respiratory surface area, Comparative Biochemistry and Physiology Part A: Physiology 47, no.22 (Feb 1974): 485–498.https://doi.org/10.1016/0300-9629(74)90012-7Arthur T Vollmer, James A MacMahon Comparative water relations of five species of spiders from different habitats, Comparative Biochemistry and Physiology Part A: Physiology 47, no.22 (Feb 1974): 753–765.https://doi.org/10.1016/0300-9629(74)90035-8Robert W. Guimond, Victor H. Hutchison Aquatic Respiration: An Unusual Strategy in the Hellbender Cryptobranchus alleganiensis alleganiensis (Daudin), Science 182, no.41184118 (Dec 1973): 1263–1265.https://doi.org/10.1126/science.182.4118.1263Robert W. Guimond, Victor H. Hutchison Trimodal gas exchange in the large aquatic salamander, Siren lacertina (Linnaeus), Comparative Biochemistry and Physiology Part A: Physiology 46, no.22 (Oct 1973): 249–268.https://doi.org/10.1016/0300-9629(73)90416-7Gordon R. Ultsch A theoretical and experimental investigation of the relationships between metabolic rate, body size, and oxygen exchange capacity, Respiration Physiology 18, no.22 (Jul 1973): 143–160.https://doi.org/10.1016/0034-5687(73)90045-5W. P. Porter, J. W. Mitchell, W. A. Beckman, C. B. DeWitt Behavioral implications of mechanistic ecology, Oecologia 13, no.11 (Jan 1973): 1–54.https://doi.org/10.1007/BF00379617Albert F. Bennett, Paul Licht Relative contributions of anaerobic and aerobic energy production during activity in amphibia, Journal of Comparative Physiology 87, no.44 (Jan 1973): 351–360.https://doi.org/10.1007/BF00695269Robert W Guimond, Victor H Hutchison Pulmonary, branchial and cutaneous gas exchange in the mud puppy, Necturusmaculosus maculosus (Rafinesque), Comparative Biochemistry and Physiology Part A: Physiology 42, no.22 (Jun 1972): 367–392.https://doi.org/10.1016/0300-9629(72)90118-1Hartmut Schultheiss, Wilfred Hanke, Jean Maetz Hormonal regulation of the skin diffusional permeability to water during development and metamorphosis of Xenopus laevis daudin, General and Comparative Endocrinology 18, no.22 (Apr 1972): 400–404.https://doi.org/10.1016/0016-6480(72)90229-8David R. Jones Anaerobiosis and the oxygen debt in an anuran amphibian,Rana esculenta (L.), Journal of Comparative Physiology 77, no.44 (Jan 1972): 356–382.https://doi.org/10.1007/BF00694941F. H. Pough Leech-Repellent Property of Eastern Red-Spotted Newts, Notophthalmus viridescens, Science 174, no.40144014 (Dec 1971): 1144–1146.https://doi.org/10.1126/science.174.4014.1144John F Anderson Metabolic rates of spiders, Comparative Biochemistry and Physiology 33, no.11 (Mar 1970): 51–72.https://doi.org/10.1016/0010-406X(70)90483-4Jerrold H. Zar The use of the allometric model for avian standard metabolism-body weight relationships, Comparative Biochemistry and Physiology 29, no.11 (Apr 1969): 227–234.https://doi.org/10.1016/0010-406X(69)91738-1Robert W Guimond, Victor H Hutchison The effect of temperature and photoperiod on gas exchange in the leopard frog, Rana pipiens, Comparative Biochemistry and Physiology 27, no.11 (Oct 1968): 177–195.https://doi.org/10.1016/0010-406X(68)90763-9 Tom M. Spight The Water Economy of Salamanders: Evaporative Water Loss, Physiological Zoology 41, no.22 (Sep 2015): 195–203.https://doi.org/10.1086/physzool.41.2.30155450 Victor H. Hutchison , Walter G. Whitford , and Margaret Kohl Relation of Body Size and Surface Area to Gas Exchange in Anurans, Physiological Zoology 41, no.11 (Sep 2015): 65–85.https://doi.org/10.1086/physzool.41.1.30158485

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call