Abstract

Previous articleNext article No AccessThe Relationship between Summated Tissue Respiration and Metabolic Rate in the Mouse and DogArthur W. Martin and Frederick A. FuhrmanArthur W. Martin Search for more articles by this author and Frederick A. Fuhrman Search for more articles by this author PDFPDF PLUS Add to favoritesDownload CitationTrack CitationsPermissionsReprints Share onFacebookTwitterLinkedInRedditEmail SectionsMoreDetailsFiguresReferencesCited by Volume 28, Number 1Jan., 1955 Article DOIhttps://doi.org/10.1086/physzool.28.1.30152176 Views: 25Total views on this site Citations: 96Citations are reported from Crossref Journal History This article was published in Physiological Zoology (1928-1998), which is continued by Physiological and Biochemical Zoology (1999-present). Copyright 1955 The University of ChicagoPDF download Crossref reports the following articles citing this article:Gianluca Sgarbi, Timna Hitrec, Roberto Amici, Alessandra Baracca, Alessia Di Cristoforo, Francesca Liuzzi, Marco Luppi, Giancarlo Solaini, Fabio Squarcio, Giovanni Zamboni, Matteo Cerri Mitochondrial respiration in rats during hypothermia resulting from central drug administration, Journal of Comparative Physiology B 192, no.22 (Jan 2022): 349–360.https://doi.org/10.1007/s00360-021-01421-6Vinod Kumar, Aakansha Sharma, Vatsala Tripathi Physiological effects of food availability times in higher vertebrates, Journal of Experimental Biology 225, no.33 (Jan 2022).https://doi.org/10.1242/jeb.239004Michel Genoud The seasonal variation of basal metabolic rate is related to the expression of torpor among small mammals, Journal of Thermal Biology 104 (Feb 2022): 103197.https://doi.org/10.1016/j.jtherbio.2022.103197Ana Gabriela Jimenez Structural plasticity of the avian pectoralis: a case for geometry and the forgotten organelle, The Journal of Experimental Biology 223, no.2323 (Dec 2020): jeb234120.https://doi.org/10.1242/jeb.234120Brendan J. McCabe, Christopher G. Guglielmo Migration Takes Extra Guts for Juvenile Songbirds: Energetics and Digestive Physiology During the First Journey, Frontiers in Ecology and Evolution 7 (Oct 2019).https://doi.org/10.3389/fevo.2019.00381V.V. Aristov Biological systems as nonequilibrium structures described by kinetic methods, Results in Physics 13 (Jun 2019): 102232.https://doi.org/10.1016/j.rinp.2019.102232Michael D. Neinast, Cholsoon Jang, Sheng Hui, Danielle S. Murashige, Qingwei Chu, Raphael J. Morscher, Xiaoxuan Li, Le Zhan, Eileen White, Tracy G. Anthony, Joshua D. Rabinowitz, Zoltan Arany Quantitative Analysis of the Whole-Body Metabolic Fate of Branched-Chain Amino Acids, Cell Metabolism 29, no.22 (Feb 2019): 417–429.e4.https://doi.org/10.1016/j.cmet.2018.10.013Pablo A. Cortes, Francisco Bozinovic, Pierre U. Blier Mitochondrial phenotype during torpor: Modulation of mitochondrial electron transport system in the Chilean mouse–opossum Thylamys elegans, Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 221 (Jul 2018): 7–14.https://doi.org/10.1016/j.cbpa.2017.12.014Katherine E. Mathers, Sarah V. McFarlane, Lin Zhao, James F. Staples Regulation of mitochondrial metabolism during hibernation by reversible suppression of electron transport system enzymes, Journal of Comparative Physiology B 187, no.11 (Aug 2016): 227–234.https://doi.org/10.1007/s00360-016-1022-0Ana Gabriela Jimenez Physiological underpinnings in life-history trade-offs in man’s most popular selection experiment: the dog, Journal of Comparative Physiology B 186, no.77 (May 2016): 813–827.https://doi.org/10.1007/s00360-016-1002-4Simon Nørgaard, Kim Andreassen, Christian Lind Malte, Sanne Enok, Tobias Wang Low cost of gastric acid secretion during digestion in ball pythons, Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 194 (Apr 2016): 62–66.https://doi.org/10.1016/j.cbpa.2016.01.003James F. Staples Metabolic Flexibility: Hibernation, Torpor, and Estivation, (Mar 2016): 737–771.https://doi.org/10.1002/cphy.c140064Masahito Tsuboi, Jun Shoji, Atsushi Sogabe, Ingrid Ahnesjö, Niclas Kolm Within species support for the expensive tissue hypothesis: a negative association between brain size and visceral fat storage in females of the P acific seaweed pipefish, Ecology and Evolution 6, no.33 (Jan 2016): 647–655.https://doi.org/10.1002/ece3.1873Pablo Andres Cortés, Leonardo Daniel Bacigalupe, Fredy Mondaca, Véronique Desrosiers, Pierre U. Blier Mitochondrial phenotype of marsupial torpor: Fuel metabolic switch in the Chilean mouse-opossum Thylamys elegans, Journal of Experimental Zoology Part A: Ecological Genetics and Physiology 325, no.11 (Nov 2015): 41–51.https://doi.org/10.1002/jez.1994Timothy G. Bromage, Yusuf M. Juwayeyi, Julia A. Katris, Santiago Gomez, Olexandra Ovsiy, Justin Goldstein, Malvin N. Janal, Bin Hu, Friedemann Schrenk The scaling of human osteocyte lacuna density with body size and metabolism, Comptes Rendus Palevol 15, no.1-21-2 (Jan 2016): 32–39.https://doi.org/10.1016/j.crpv.2015.09.001 Musculoskeletal system, (Aug 2015): 142–156.https://doi.org/10.1017/CBO9781316275108.012 Function, (Aug 2015): 204–230.https://doi.org/10.1017/CBO9781316275108.017Clara Cooper-Mullin, Ana Gabriela Jimenez, Nicholas B. Anthony, Matthew Wortman, Joseph B. Williams The metabolic rate of cultured muscle cells from hybrid Coturnix quail is intermediate to that of muscle cells from fast-growing and slow-growing Coturnix quail, Journal of Comparative Physiology B 185, no.55 (May 2015): 547–557.https://doi.org/10.1007/s00360-015-0906-8Douglas S. Glazier Is metabolic rate a universal ‘pacemaker’ for biological processes?, Biological Reviews 90, no.22 (May 2014): 377–407.https://doi.org/10.1111/brv.12115Ana Gabriela Jimenez and Joseph B. Williams Differences in Muscle Fiber Size and Associated Energetic Costs in Phylogenetically Paired Tropical and Temperate Birds, Physiological and Biochemical Zoology 87, no.55 (Oct 2015): 752–761.https://doi.org/10.1086/677922China M. Kummitha, Satish C. Kalhan, Gerald M. Saidel, Nicola Lai Relating tissue/organ energy expenditure to metabolic fluxes in mouse and human: experimental data integrated with mathematical modeling, Physiological Reports 2, no.99 (Sep 2014): e12159.https://doi.org/10.14814/phy2.12159Ana Gabriela Jimenez, Clara Cooper-Mullin, Nicholas B. Anthony, Joseph B. Williams Cellular metabolic rates in cultured primary dermal fibroblasts and myoblast cells from fast-growing and control Coturnix quail, Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 171 (May 2014): 23–30.https://doi.org/10.1016/j.cbpa.2014.02.006Jason C. L. Brown, James F. Staples Substrate-specific changes in mitochondrial respiration in skeletal and cardiac muscle of hibernating thirteen-lined ground squirrels, Journal of Comparative Physiology B 184, no.33 (Jan 2014): 401–414.https://doi.org/10.1007/s00360-013-0799-3E. R. Price, L. J. Ruff, A. Guerra, W. H. Karasov Cold exposure increases intestinal paracellular permeability to nutrients in the mouse, Journal of Experimental Biology 216, no.2121 (Aug 2013): 4065–4070.https://doi.org/10.1242/jeb.088203Dillon J. Chung, Beata Szyszka, Jason C. L. Brown, Norman P. A. Hüner, James F. Staples Changes in the mitochondrial phosphoproteome during mammalian hibernation, Physiological Genomics 45, no.1010 (May 2013): 389–399.https://doi.org/10.1152/physiolgenomics.00171.2012Bernard W.M. Wone, Edward R. Donovan, John C. Cushman, Jack P. Hayes Metabolic rates associated with membrane fatty acids in mice selected for increased maximal metabolic rate, Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 165, no.11 (May 2013): 70–78.https://doi.org/10.1016/j.cbpa.2013.02.010William H. Karasov, Angela E. Douglas Comparative Digestive Physiology, (Apr 2013): 741–783.https://doi.org/10.1002/cphy.c110054Kirsten Gallagher and James F. Staples Metabolism of Brain Cortex and Cardiac Muscle Mitochondria in Hibernating 13-Lined Ground Squirrels Ictidomys tridecemlineatus, Physiological and Biochemical Zoology 86, no.11 (Jul 2015): 1–8.https://doi.org/10.1086/668853Tommy Norin and Hans Malte Intraspecific Variation in Aerobic Metabolic Rate of Fish: Relations with Organ Size and Enzyme Activity in Brown Trout, Physiological and Biochemical Zoology 85, no.66 (Jul 2015): 645–656.https://doi.org/10.1086/665982T. L. Killpack, W. H. Karasov Growth and development of house sparrows (Passer domesticus) in response to chronic food restriction throughout the nestling period, Journal of Experimental Biology 215, no.1111 (May 2012): 1806–1815.https://doi.org/10.1242/jeb.066316Ulf Bauchinger, Scott R. McWilliams Tissue-Specific Mass Changes During Fasting: The Protein Turnover Hypothesis, (May 2012): 193–206.https://doi.org/10.1007/978-3-642-29056-5_12Jason C. L. Brown, Dillon J. Chung, Kathleen R. Belgrave, James F. Staples Mitochondrial metabolic suppression and reactive oxygen species production in liver and skeletal muscle of hibernating thirteen-lined ground squirrels, American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 302, no.11 (Jan 2012): R15–R28.https://doi.org/10.1152/ajpregu.00230.2011ZiMian Wang, Junyi Zhang, Zhiliang Ying, Steven B. Heymsfield Organ-Tissue Level Model of Resting Energy Expenditure Across Mammals: New Insights into Kleiber's Law, ISRN Zoology 2012 (Jan 2012): 1–9.https://doi.org/10.5402/2012/673050William H. Karasov Digestive physiology: a view from molecules to ecosystem, American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 301, no.22 (Aug 2011): R276–R284.https://doi.org/10.1152/ajpregu.00600.2010Dillon Chung, Graham P. Lloyd, Raymond H. Thomas, Chrisopher G. Guglielmo, James F. Staples Mitochondrial respiration and succinate dehydrogenase are suppressed early during entrance into a hibernation bout, but membrane remodeling is only transient, Journal of Comparative Physiology B 181, no.55 (Jan 2011): 699–711.https://doi.org/10.1007/s00360-010-0547-xWilliam H. Karasov, Carlos Martínez del Rio, Enrique Caviedes-Vidal Ecological Physiology of Diet and Digestive Systems, Annual Review of Physiology 73, no.11 (Mar 2011): 69–93.https://doi.org/10.1146/annurev-physiol-012110-142152Carola W. Meyer, Monja Willershäuser, Martin Jastroch, Bryan C. Rourke, Tobias Fromme, Rebecca Oelkrug, Gerhard Heldmaier, Martin Klingenspor Adaptive thermogenesis and thermal conductance in wild-type and UCP1-KO mice, American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 299, no.55 (Nov 2010): R1396–R1406.https://doi.org/10.1152/ajpregu.00021.2009Christopher Armstrong, James F. Staples The role of succinate dehydrogenase and oxaloacetate in metabolic suppression during hibernation and arousal, Journal of Comparative Physiology B 180, no.55 (Jan 2010): 775–783.https://doi.org/10.1007/s00360-010-0444-3Malcolm A. MacIver, Neelesh A. Patankar, Anup A. Shirgaonkar, Karl J. Friston Energy-Information Trade-Offs between Movement and Sensing, PLoS Computational Biology 6, no.55 (May 2010): e1000769.https://doi.org/10.1371/journal.pcbi.1000769Jason C.L. Brown, James F. Staples Mitochondrial metabolism during fasting-induced daily torpor in mice, Biochimica et Biophysica Acta (BBA) - Bioenergetics 1797, no.44 (Apr 2010): 476–486.https://doi.org/10.1016/j.bbabio.2010.01.009David A. Raichlen, Adam D. Gordon, Magdalena N. Muchlinski, J. Josh Snodgrass Causes and significance of variation in mammalian basal metabolism, Journal of Comparative Physiology B 180, no.22 (Sep 2009): 301–311.https://doi.org/10.1007/s00360-009-0399-4Jason C.L. Brown, Grant B. McClelland, Paul A. Faure, Jordan M. Klaiman, James F. Staples Examining the mechanisms responsible for lower ROS release rates in liver mitochondria from the long-lived house sparrow (Passer domesticus) and big brown bat (Eptesicus fuscus) compared to the short-lived mouse (Mus musculus), Mechanisms of Ageing and Development 130, no.88 (Aug 2009): 467–476.https://doi.org/10.1016/j.mad.2009.05.002Eric A. Mellon, R. Shashank Beesam, James E. Baumgardner, Arijitt Borthakur, Walter R. Witschey, Ravinder Reddy Estimation of the regional cerebral metabolic rate of oxygen consumption with proton detected 17O MRI during precision 17O2 inhalation in swine, Journal of Neuroscience Methods 179, no.11 (Apr 2009): 29–39.https://doi.org/10.1016/j.jneumeth.2009.01.008Vincent van Ginneken, Guido van den Thillart Metabolic depression in fish measured by direct calorimetry: A review, Thermochimica Acta 483, no.1-21-2 (Feb 2009): 1–7.https://doi.org/10.1016/j.tca.2008.09.027James F. Staples, Jason C. L. Brown Mitochondrial metabolism in hibernation and daily torpor: a review, Journal of Comparative Physiology B 178, no.77 (Jun 2008): 811–827.https://doi.org/10.1007/s00360-008-0282-8Jason C. L. Brown, Alexander R. Gerson, James F. Staples Mitochondrial metabolism during daily torpor in the dwarf Siberian hamster: role of active regulated changes and passive thermal effects, American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 293, no.55 (Nov 2007): R1833–R1845.https://doi.org/10.1152/ajpregu.00310.2007 Joseph B. Williams , B. Irene Tieleman , G. Henk Visser , and Robert E. Ricklefs Does Growth Rate Determine the Rate of Metabolism in Shorebird Chicks Living in the Arctic? J. B. Williams, B. I. Tieleman, G. H. Visser, and R. E. Ricklefs, Physiological and Biochemical Zoology 80, no.55 (Jul 2015): 500–513.https://doi.org/10.1086/520126Denys N. Wheatley Convergence of metabolic rate of cultured cells from animals of different sizes, American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 292, no.66 (Jun 2007): R2113–R2114.https://doi.org/10.1152/ajpregu.00102.2007F. Vezina Acclimation to different thermal conditions in a northerly wintering shorebird is driven by body mass-related changes in organ size, Journal of Experimental Biology 209, no.1616 (Aug 2006): 3141–3154.https://doi.org/10.1242/jeb.02338 Stéphane Ostrowski , Pascal Mésochina , and Joseph B. Williams Physiological Adjustments of Sand Gazelles (Gazella subgutturosa) to a Boom‐or‐Bust Economy: Standard Fasting Metabolic Rate, Total Evaporative Water Loss, and Changes in the Sizes of Organs during Food and Water Restriction S. Ostrowski, P. Mésochina, and J. B. Williams, Physiological and Biochemical Zoology 79, no.44 (Jul 2015): 810–819.https://doi.org/10.1086/504614 Helen M. Muleme , Amy C. Walpole , and James F. Staples Mitochondrial Metabolism in Hibernation: Metabolic Suppression, Temperature Effects, and Substrate Preferences H. M. Muleme, A. C. Walpole, and J. F. Staples, Physiological and Biochemical Zoology 79, no.33 (Jul 2015): 474–483.https://doi.org/10.1086/501053 Agustí Muñoz‐Garcia and Joseph B. Williams Basal Metabolic Rate in Carnivores Is Associated with Diet after Controlling for Phylogeny A. Muñoz‐Garcia and J. B. Williams, Physiological and Biochemical Zoology 78, no.66 (Jul 2015): 1039–1056.https://doi.org/10.1086/432852Marcel Klaassen, Martina Oltrogge, Lisa Trost Basal metabolic rate, food intake, and body mass in cold- and warm-acclimated Garden Warblers, Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 137, no.44 (Apr 2004): 639–647.https://doi.org/10.1016/j.cbpb.2003.12.004E. Krol Limits to sustained energy intake VIII. Resting metabolic rate and organ morphology of laboratory mice lactating at thermoneutrality, Journal of Experimental Biology 206, no.2323 (Dec 2003): 4283–4291.https://doi.org/10.1242/jeb.00676Shin OIKAWA, Yasuo ITAZAWA Relationship between summated tissue respiration and body size in a marine teleost, the porgy Pagrus major, Fisheries Science 69, no.44 (Aug 2003): 687–694.https://doi.org/10.1046/j.1444-2906.2003.00675.xSteven N. Austad, Deborah M. Kristan Are mice calorically restricted in nature?, Aging Cell 2, no.44 (Aug 2003): 201–207.https://doi.org/10.1046/j.1474-9728.2003.00053.xA. Kvist, Å. Lindström Basal metabolic rate in migratory waders: intra-individual, intraspecific, interspecific and seasonal variation, Functional Ecology 15, no.44 (Dec 2001): 465–473.https://doi.org/10.1046/j.0269-8463.2001.00549.xMalcolm A. MacIver Neuroethology, (Jan 2001): 480–504.https://doi.org/10.1017/CBO9780511816826.026Jon J Ramsey, Mary-Ellen Harper, Richard Weindruch Restriction of energy intake, energy expenditure, and aging, Free Radical Biology and Medicine 29, no.1010 (Nov 2000): 946–968.https://doi.org/10.1016/S0891-5849(00)00417-2V.I. Baranov, V.M. Belichenko, C.A. Shoshenko Oxygen Diffusion Coefficient in Isolated Chicken Red and White Skeletal Muscle Fibers in Ontogenesis, Microvascular Research 60, no.22 (Sep 2000): 168–176.https://doi.org/10.1006/mvre.2000.2251Å. LindstrÖM, M. Klaassen, A. Kvist Variation in energy intake and basal metabolic rate of a bird migrating in a wind tunnel, Functional Ecology 13, no.33 (Mar 2002): 352–359.https://doi.org/10.1046/j.1365-2435.1999.00320.xJ.R. Speakman The Cost of Living: Field Metabolic Rates of Small Mammals, (Jan 1999): 177–297.https://doi.org/10.1016/S0065-2504(08)60019-7Henrik Thorlacius, Brigitte Vollmar, Simone Westermann, Leif Torkvist, Michael D. Menger Effects of Local Cooling on Microvascular Hemodynamics and Leukocyte Adhesion in the Striated Muscle of Hamsters, The Journal of Trauma: Injury, Infection, and Critical Care 45, no.44 (Oct 1998): 715–719.https://doi.org/10.1097/00005373-199810000-00016James F. Staples, Peter W. Hochachka Liver energy metabolism during hibernation in the golden-mantled ground squirrel, Spermophilus lateralis, Canadian Journal of Zoology 75, no.77 (Jul 1997): 1059–1065.https://doi.org/10.1139/z97-127Kimberly A. Hammond, Jared Diamond Maximal sustained energy budgets in humans and animals, Nature 386, no.66246624 (Apr 1997): 457–462.https://doi.org/10.1038/386457a0R. E. Ricklefs Morphometry of the Digestive Tracts of Some Passerine Birds, The Condor 98, no.22 (May 1996): 279–292.https://doi.org/10.2307/1369146P. T. Schumacker Regulation of Gut Oxygen Delivery, Cellular Oxygen Supply and Metabolic Activity, (Jan 1996): 65–75.https://doi.org/10.1007/978-3-642-80224-9_5Marek Konarzewski, Jared Diamond EVOLUTION OF BASAL METABOLIC RATE AND ORGAN MASSES IN LABORATORY MICE, Evolution 49, no.66 (May 2017): 1239–1248.https://doi.org/10.1111/j.1558-5646.1995.tb04450.xI Scott, P.R Evans The metabolic output of avian (Sturnus vulgaris, Calidris alpina) adipose tissue liver and skeletal muscle: Implications for BMR/body mass relationships, Comparative Biochemistry and Physiology Part A: Physiology 103, no.22 (Oct 1992): 329–332.https://doi.org/10.1016/0300-9629(92)90589-IChing Chung Chou Gastrointestinal circulation and motor function, (Jan 2011): 1475–1518.https://doi.org/10.1002/cphy.cp060140Edward F. Adolph Uptakes and uses of oxygen, from gametes to maturity: An overview, Respiration Physiology 53, no.22 (Aug 1983): 135–160.https://doi.org/10.1016/0034-5687(83)90063-4John W Prothero Organ scaling in mammals: The liver, Comparative Biochemistry and Physiology Part A: Physiology 71, no.44 (Jan 1982): 567–577.https://doi.org/10.1016/0300-9629(82)90205-5Duane L. Guernsey, G.Causey Whittow Basal metabolic rate, tissue thermogenesis and sodium-dependent tissue respiration of rats during cold-acclimation and deacclimation, Journal of Thermal Biology 6, no.11 (Jan 1981): 7–10.https://doi.org/10.1016/0306-4565(81)90035-8D.N. Granger, P.D.I. Richardson, P.R. Kvietys, N.A. Mortillaro Intestinal blood flow, Gastroenterology 78, no.44 (Apr 1980): 837–863.https://doi.org/10.1016/0016-5085(80)90692-7F. R. N. Nabarro, A. T. Quintanilha, K. Hanson The Crenation of Lipid Bilayers and of the Membrane of the Human Red Blood Cell, (Jan 1980): 327–343.https://doi.org/10.1007/978-3-642-67848-6_68Henri Girard, MichÈle Grima Allometric relation between blood oxygen uptake and body mass in birds, Comparative Biochemistry and Physiology Part A: Physiology 66, no.33 (Jan 1980): 485–491.https://doi.org/10.1016/0300-9629(80)90196-6 Henry D. Prange , John F. Anderson , and Hermann Rahn Scaling of Skeletal Mass to Body Mass in Birds and Mammals, The American Naturalist 113, no.11 (Oct 2015): 103–122.https://doi.org/10.1086/283367N A Mortillaro, H J Granger Reactive hyperemia and oxygen extraction in the feline small intestine., Circulation Research 41, no.66 (Dec 1977): 859–865.https://doi.org/10.1161/01.RES.41.6.859Theodore I. Grand Body weight: Its relation to tissue composition, segment distribution, and motor function. I. Interspecific comparisons, American Journal of Physical Anthropology 47, no.22 (Sep 1977): 211–239.https://doi.org/10.1002/ajpa.1330470204L. Girardier The regulation of the biological furnace of warm blooded animals, Experientia 33, no.99 (Sep 1977): 1121–1122.https://doi.org/10.1007/BF01922276E.O. ATTINGER Structure and Function of the Peripheral Circulation, (Jan 1973): 3–47.https://doi.org/10.1016/B978-0-12-136202-7.50007-1Doris M Stewart THE ROLE OF TENSION IN MUSCLE GROWTH, (Jan 1972): 77–100.https://doi.org/10.1016/B978-0-12-293060-7.50010-4R. C. Newell, V. I. Pye Variations in the relationship between oxygen consumption, body size and summated tissue metabolism in the winkle Littorina littorea, Journal of the Marine Biological Association of the United Kingdom 51, no.22 (May 2009): 315–338.https://doi.org/10.1017/S0025315400031805G. Wright, J. M. Sanderson Improved method for fixation of dog brain by vascular perfusion, The Journal of Pathology 100, no.44 (Apr 1970): 295–305.https://doi.org/10.1002/path.1711000409V.R. YOUNG The Role of Skeletal and Cardiac Muscle in the Regulation of Protein Metabolism, (Jan 1970): 585–674.https://doi.org/10.1016/B978-0-12-510604-7.50018-9H.N. MUNRO Evolution of Protein Metabolism in Mammals, (Jan 1969): 133–182.https://doi.org/10.1016/B978-1-4832-3211-9.50010-3Alfred Locker, Peter Weish Gesamtstoffwechsel und summierte Gewebsatmung in Beziehung zur Körpergröße, Helgoländer Wissenschaftliche Meeresuntersuchungen 16, no.1-21-2 (Aug 1967): 136–156.https://doi.org/10.1007/BF01620695OVE LUNDGREN STUDIES ON BLOOD FLOW DISTRIBUTION AND COUNTERCURRENT EXCHANGE IN THE SMALL INTESTINE, Acta Physiologica Scandinavica 72 (Jan 1967): 1–42.https://doi.org/10.1111/j.1748-1716.1967.tb03885.xEugen Zeisberger Liver oxygen consumption of cold- and warm-acclimated rats and factors regulating liver oxidative metabolism, Helgoländer Wissenschaftliche Meeresuntersuchungen 14, no.1-41-4 (Dec 1966): 528–540.https://doi.org/10.1007/BF01611643Ludwig Bertalanffy Basic concepts in quantitative biology of metabolism, Helgoländer Wissenschaftliche Meeresuntersuchungen 9, no.1-41-4 (Sep 1964): 5–37.https://doi.org/10.1007/BF01610024Klaus Urich Die endogene Atmung der isolierten Organe beim Regenwurm Lumbricus terrestris L., Zeitschrift f�r Vergleichende Physiologie 48, no.22 (Jan 1964): 190–197.https://doi.org/10.1007/BF00297859J.E. RALL, J. ROBBINS, C.G. LEWALLEN The Thyroid, (Jan 1964): 159–439.https://doi.org/10.1016/B978-0-12-395716-0.50011-5A. Vacek, E. Davidová, B. Hošek Tension of Oxygen in Tissues and Its Changes during Irradiation, International Journal of Radiation Biology and Related Studies in Physics, Chemistry and Medicine 8, no.55 (Jul 2009): 499–505.https://doi.org/10.1080/09553006414550601A. Locker, Ruth-M. Locker Die Bedeutung experimenteller Variablen für die Abhängigkeit der Gewebsatmung von der Körpergröße, Pflüger's Archiv für die gesamte Physiologie des Menschen und der Tiere 274, no.66 (Nov 1962): 581–592.https://doi.org/10.1007/BF00363146Marion P. Meyer, Peter Morrison Tissue slice respiration in the developing opossum, Journal of Experimental Zoology 148, no.11 (Oct 1961): 1–20.https://doi.org/10.1002/jez.1401480102 REFERENCES, Acta Physiologica Scandinavica 46 (Dec 1959): 125–135.https://doi.org/10.1111/j.1748-1716.1959.tb01802.x

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call