Abstract
In this study, a new type of hybrid solar cell based on a heterojunction between poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) and vertically aligned n-type GaAs nanowire (NW) arrays is investigated. The GaAs NW arrays are fabricated by directly performing the nano-etching of GaAs wafer with spun-on SiO2 nanospheres as the etch mask through inductively coupled plasma reactive ion etching. The PEDOT:PSS adheres to the surface of GaAs NW arrays to form a p-n junction. The morphology of GaAs NW arrays strongly influences the characteristics of the GaAs NW/PEDOT:PSS hybrid solar cells. The suppression of reflectance and the interpenetrating heterojunction interface of GaAs NW arrays will offer great improvements in efficiency relative to a conventional planar cell. The power conversion efficiency of GaAs NW/PEDOT:PSS cells under AM 1.5 global one sun illumination can achieve 5.8 %.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.