Abstract

Eco-driving offers potential to reduce fuel use and emission rates for light-duty gasoline vehicles (LDGVs). The objective is to quantify real-world route-level and segment-level fuel use and emission rates reduction potential for LDGV eco-driving. Three million seconds of real-world speed trajectory data were analyzed based on predominantly naturalistic driving of 160 drivers on eight mesoscale routes. The routes were further divided into 199 segments. A Vehicle Specific Power modal model was used to estimate trajectory-average fuel use and emission rates of CO2, CO, hydrocarbons, NOx, and particulate matter and to identify eco-driving trajectories. For route-level eco-driving, fuel use and emission rates reduction potential ranges from 6% to 40%, compared to average fuel use and emission rates estimated based on all trajectories. Eco-driving focused on fuel savings typically reduced air emissions and vice versa. Route-level eco-driving typically but not always concurrently reduces segment-level fuel use and emission rates. These co-benefits and tradeoffs can be used to guide LDGV eco-driving decisions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.